Những câu hỏi liên quan
DH
Xem chi tiết
NT
11 tháng 11 2021 lúc 22:04

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

Bình luận (0)
HN
Xem chi tiết

a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\) 

b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\) 

     \(\dfrac{x}{3}=\dfrac{-14}{15}\) 

\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)

Bình luận (0)

\(x=\dfrac{-2}{7}+\dfrac{9}{7}\) 

\(x=1\)

Bình luận (0)
H24
21 tháng 5 2021 lúc 16:28

x=1

Bình luận (0)
HN
Xem chi tiết
VT
25 tháng 9 2023 lúc 20:25

`a, 2/3 +3/4 = (8+9)/12=17/12.`

`1 1/3+4/5 = 4/3 + 4/5 = (20+12)/15=32/15`.

`=> x=2.`

`b, 5/6-1/4=(20-6)/24=7/12`.

`2 1/3-2/5= 7/3-2/5 = (35-6)/15=29/15`.

`=> x=1`.

Bình luận (0)
H24
25 tháng 9 2023 lúc 20:25

a) \(\dfrac{2}{3}+\dfrac{3}{4}=\dfrac{8+9}{12}=\dfrac{17}{12}\)

-> 1 1/3 + 4/5 = 4/3 + 4/5 =  20+12/15 = 32/15

vậy x có thể = 14/14 = 1 (x thuộc N)

Bình luận (1)
MD
Xem chi tiết
NT
1 tháng 4 2023 lúc 20:29

a: =>4x^2-4x+1+7>4x^2+3x+1

=>-4x+8>3x+1

=>-7x>-7

=>x<1

b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)

=>1>=9(loại)

Bình luận (0)
AD
Xem chi tiết
TH
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)
BB
Xem chi tiết
BB
20 tháng 12 2020 lúc 8:45

giúp mik với đi ạ mik thực sự đang cần gấp

Bình luận (0)
LP
Xem chi tiết
GD

\(\dfrac{5}{x-3}+\dfrac{4}{x+3}=\dfrac{x-5}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\\ \Leftrightarrow\dfrac{5\left(x+3\right)+4\left(x-3\right)}{x^2-9}=\dfrac{x-5}{x^2-9}\\ \Leftrightarrow5x+15+4x-12=x-5\\ \Leftrightarrow5x+4x-x=-5-15+12\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\left(TM\right)\\ Vậy:S=\left\{-1\right\}\)

Bình luận (0)
LP
Xem chi tiết
NT
18 tháng 3 2023 lúc 0:30

 

loading...

Bình luận (0)
TK
Xem chi tiết
NT
6 tháng 10 2021 lúc 23:47

\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)

\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)

hay x=1

Bình luận (0)