Cho 3 số nguyên a,b,c khác 0.Hỏi ab^2019,bc^2019,ca^2019 có thể cùng có giá trị âm được hay không
Tính giá trị biểu thức :
A = [ (a+b)2019 - c2019 ] [ (b+c)2019 - a2019 ] [ (a+c)2019 - b2019 ]
Cho a,b,c là các số nguyên khác 0. Hỏi ba biểu thức a19 .b5; b19.c5 và c19.a5 có thể cùng giá trị nguyên âm hay không ?
Ta có: \(\left(a^{19}.b^5\right).\left(b^{19}.c^5\right).\left(c^{19}.a^5\right)=a^{24}.b^{24}.c^{24}>0\) với mọi a;b;c khác 0
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 biểu thức phải có giá trị dương
\(\Rightarrow\) Ba biểu thức đã cho không thể có cùng giá trị nguyên âm
cho 4 số hữu tỷ a, b, c, d, khác 0
a, 4biểu thức ad, -bc, -ac, -bd có thể cùng một giá trị âm được không ? vì sao
b, 4 biểu thức ac- cd- ad : ab-aa+cd, -ab +bc +ac, ad- bc - bb có thể cùng giá trị dương được không? vì sao
CHO \(ab+bc+ca=2019\) chứng minh \(\frac{a^2-bc}{a^2+2019}+\frac{b^2-ca}{b^2+2019}+\frac{c^2-ab}{c^2+2019}=0\)
Ta có: \(a^2+2019=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+2019=\left(a+b\right)\left(b+c\right)\)
\(c^2+2019=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(b+c\right)}\)\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ac\right)\left(a+c\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)\(=\frac{a^2b-b^2c+a^2c-bc^2+ab^2-a^2c+b^2c-ac^2+ac^2+bc^2-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)\(\Rightarrow dpcm\)
\(\text{Thay }ab+bc+ac=2019\text{ vào biểu thức trên, ta có: }\)
\(\frac{a^2-bc}{a^2+ab+bc+ac}+\frac{b^2-ac}{b^2+ab+bc+ac}+\frac{c^2-ab}{c^2+ab+bc+ac}\)
\(=\frac{\left(a^2-bc\right).\left(b+c\right)}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}+\frac{\left(b^2-ac\right).\left(a+c\right)}{\left(a+b\right).\left(b+c\right).\left(a+c\right)}+\frac{\left(c^2-ab\right).\left(a+b\right)}{\left(a+c\right).\left(b+c\right).\left(a+b\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2a+b^2c-a^2c-ac^2+c^2a+c^2b-a^2b-ab^2}{\left(a+c\right).\left(a+b\right).\left(b+c\right)}=0\)
Vậy...
cho bốn số a,b,c,d\(\in\)Q(a,b,c,d khác 0)
a)bốn biểu thức ad;-bc;-ac;-bd có thể cùng có giá trị âm được không?
b)bốn biểu thức:
ac-cd-ad;ab-a2+cd;-ab+bc-ac;-bc+ad-b2 có thể cùng có giá trị dương được không?
cho 3 số a, b , c ko âm thỏa mãn :a+b=1-ab,b+c=3-bc, c+a=7-ac . tính S=a^2019+b^2019+c^2019
cho các số a,b,c khác 0 sao cho \(a+b=c+\frac{1}{2019}\)và \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\)
tính giá trị của \(P=\left(a^{2019}+b^{2019}-c^{2019}\right)\left(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)\)
\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)
\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)
=>a=-b hoặc c=b hoặc a=c
không mất tính tổng quát, giả sử a=-b, ta có:
\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)
tương tư với các trường hợp khác ta cũng có P=1
Vậy P=1
Tìm tất cả các giá trị nguyên thuộc [-2019; 2019]của tham
số m để phương trình \(x^4-2mx^3+x^2-2mx+1=0\) có nghiệm.
A. 2019 . B. 3039 . C. 4038 . D. 4041.
cho a,b,c,d thuộc z thỏa mãn ab+bc+ca=2019
cmr : ( a^2 + 2019) ( b^2 + 2019 ) ( c^2 + 2019) là số chính phương