CHỨNG MINH: A=\(4+4^2+4^3+4^4+....+4^{35}+4^{36}\)CHIA HẾT CHO 42
Chứng minh:
A=4+4^2+4^3+...+4^35+4^36 chia hết cho 42
A = 4 + 42 + 43 + ... + 435 + 436
= (4 + 42 + 43) + ... + (434 + 435 + 436)
= 84 + ... + 433(4 + 42 + 43)
= 84 + ... + 433 . 84
= 84 . (1 + ... + 433) \(⋮\)42
Vì 84 \(⋮\)42
bài 1
cho A = 2+2^2+2^3+........+2^2010.chứng minh rằng :A chia hết cho 42
bài 2
cho B=3^+ 3^2+3^3+........+3^60.chứng minh rằng :B chia hết cho 4;13;12;40
bài 3
cho A= 4+4^2+4^3+..........+4^47+4^48 CMR :A chia hết cho 84
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
Cho A= \(4+4^2+4^3+..........+4^{60}\)
a) Chứng minh A chia hết cho 4
b) Chứng minh A chia hết cho 5
c) Chứng minh A chia hết cho 21
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
\(A=4+4^2+4^3+.....+4^{60}\)
\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)
\(A\)\(=21+4^3.21+...4^{57}.21\)
\(\Rightarrow A⋮4;21\)
ko chia hết cho 5
a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)
Cho B= 3-3^2+3^3-3^4+3^5-3^6+...+3^35-3^36.
Chứng minh B chia hết cho 420.
Cho A= 4+42+43+...+435+436
Chứng minh rằng A chia hết cho 3 , 5 và 15
ta có
\(A=\left(4+4^2+4^3\right)+..+\left(4^{34}+4^{35}+4^{36}\right)\)
\(\Leftrightarrow A=4.21+4^4.21+..+4^{34}.21\) do đó A chia hết cho 3
mà \(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{35}+4^{36}\right)\)
hay \(A=20+4^2.20+..+4^{34}.20\) do đó A chia hết cho 5
do A vừa chia hết cho 3 và 5, nên A chia hết cho 15
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
tất cả đều có trong câu hỏi tương tự
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma
Cho `A = 4 + 4^2 + 4^3 +...+ 4^23 + 4^24`
Chứng minh A chia hết 20; A chia hết 21; A chia hết 420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
2.Cho biểu thức P=(a+b+c).(a.b+b.b+a.c)-2.a.b (với a;b;c thuộc Z).Chứng minh nếu a+b+c chia hết cho 4 thì P chia hết cho 4
3. Cho 3 số nguyên a;b;c thỏa mãn a^2+b^2=c^2.Chứng minh :
Câu a:a.b.c chia hết cho 3
Câu b:a.b.c chia hết cho 12
4.Cho p là số nguyên tố >7.Chứng minh 3^p-2^p-1 chia hết cho 42.p
5.Chứng minh với mọi STN thì n^3-n+2 không chia hết cho 6
Bài 1
a. Cho S = 3+3^2+3^3+3^4+3^5+3^6
Chứng tỏ rằng S chia hết cho 4
b. Chứng tỏ rằng : A = 4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9
Chia hết cho cả 3 và 4
Bài 2
a. Tìm số tự nhiên n sao cho 3 chia hết cho (n-1)
b. Tìm số tự nhiên n sao cho n+3 chia hết cho (n+1)
Bài 3
10^35 + 2 có chia hết cho 3 không. Vì sao?
Giup mik nha ai nhanh nhất mik sẽ TICK cho
Giúp với
Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha