Tim x,biet
\(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
Tim x biet
a/ \(20\left(\frac{x-2}{x+1}\right)^2-5\left(\frac{x+2}{x-1}\right)^2+48\left(\frac{x^2-4}{x^2-1}\right)=0\)
b/ \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(b)\) \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^{2010}.\left(2x-1\right)^2=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{2}\\x=\frac{0}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
Chúc bạn học tốt ~
tim x biet
\(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\left(2x-1\right)\left(3x-1\right)-\left(3x-2\right)\left(2x-1\right)=3\)
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a, \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Rightarrow3x^2-3x-\left(3x^2-2x\right)=5\)
\(\Rightarrow3x^2-3x-3x^2+2x=5\)
\(\Rightarrow5x=5\Rightarrow x=1\)
Câu b,c làm tương tự! Cứ tách ra là làm được à!
b ) \(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\Leftrightarrow16x^2+8x-8x^2+12x=-40\)
\(\Leftrightarrow20x=-40\)
\(\Leftrightarrow x=-2\)
Vậy phương trình có nghiệm x = - 2
tim so huu ti x biet :
a)\(\left(2x-3\right)^4=\left(2x-3\right)^6\)
b) \(\left(3x+5\right)^3=\left(3x+5\right)^{2016}\)
c) \(\left(2x+1\right)^{2015}=\left(2x+1\right)^{2017}\)
a, (2x-3)4=(2x-3)6
=> (2x-3)6 : (2x-3)4=1
=> (2x-3)3=
=> 2x-3=1
=> 2x=4
=> x=2
b, (3x+5)3=(3x+5)2016
=> (3x+5)2016 : (3x+5)3=1
=> (3x+5)2013=1
=> 3x+5=1
=> 3x=-4
=> x=-4/3
c, (2x+1)2015=(2x+1)2017
=> (2x+1)2017 : (2x+1)2015=1
=> (2x+1)2=1
=> 2x+1=1
=> 2x=0
=> x=0
Tim x biet
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
=> \(\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{5}{31}\)
=> \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{5}{31}\)
=> \(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{31}:\frac{1}{2}=\frac{5}{31}\cdot2=\frac{10}{31}\)
=> \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
=> 2x +3 = 93
=> 2x = 90 => x = 45
Tim x biet : \(\left(x-3\right)^2=\left(2x-1\right)^2\)
(x - 3)2 = (2x - 1)2
=> |x - 3| = |2x - 1|
=> x - 3 = 2x-1 hoặc x - 3 = -(2x - 1)
x - 2x = -1 + 3 hoặc x - 3 = -2x + 1
-x = 2 hoặc x + 2x = 1 + 3
x = -2 hoặc 3x = 4
x = -2 hoặc x = 4 : 3
x = -2 hoặc x = 1,(3)
tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)
\(B=2x^2+2x+2012^2+2013^2\)
\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)
\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)
\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)
3, tim x, biet ;
a,\(3x\left[12x-4\right]-9x\left[4x-3\right]=30\)
b,\(x\left[5-2x\right]+2x\left[x-1\right]=15\)
a) \(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
b) \(5x-2x^2+2x^2-2x=15\)
\(3x=15\)
\(x=5\)
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
tim x biet : \(\left|2x-5\right|+1=3x\)
Ta có:
|2x-5|+1=3x
=> |2x-5|=3x-1
=> 2x-5=3x-1 ; 2x-5=1-3x
=> -5+1=3x-2x ; 2x+3x=1+5
=>x=-4 ; 5x =6
; x=\(\dfrac{5}{6}\)