Những câu hỏi liên quan
NL
Xem chi tiết
NH
6 tháng 1 2016 lúc 21:59

A= 2015+20152+20153+....+20152013+20152014+20152015 

A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)

A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)

A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016

A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)

=> A chia hết cho 2016

=> đpcm : điều phải chứng minh

 

Bình luận (0)
NL
7 tháng 1 2016 lúc 10:25

BẠN ƠI SAI RÙI! CÓ 2015 SỐ HẠNG THÌ PHẢI LẺ 1 SỐ CHỨ

Bình luận (0)
NP
10 tháng 1 2016 lúc 6:14

A=2015​​+(2015^2+2015^3)+(2015^4+2015^5)....(2015^2014+2015^2015)

Bình luận (0)
VT
Xem chi tiết
NP
Xem chi tiết
SG
4 tháng 7 2016 lúc 22:26

\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)

\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)

\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)

\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)

\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)

\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)

\(A=2-\frac{2017}{2^{2014}}< 2\)

=> đpcm

Bình luận (0)
LL
5 tháng 7 2016 lúc 21:04

Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*

Bình luận (0)
HH
Xem chi tiết
NT
17 tháng 8 2019 lúc 21:00

Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)

\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)

Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)

\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)

\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)

Vậy bài toán đã được chứng minh

Bình luận (0)
HH
17 tháng 8 2019 lúc 21:03

cảm ơn bạn và mik cx k cho bạn r

Bình luận (0)
HH
17 tháng 8 2019 lúc 21:03

k là t i c k

Bình luận (0)
NH
Xem chi tiết
NS
15 tháng 12 2017 lúc 20:46

Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :

- Tích các số lẻ có chứa các số 11 ; 17 ; 53

- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53

=> Tổng hai tích chia hết cho 9911.

Bình luận (0)
PL
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
PK
Xem chi tiết
XO
8 tháng 12 2019 lúc 20:05

A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016

   = (22011 + 22012) + (22013 + 22014) + (22015 + 22016)

   = 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)

   = 3.22011 + 3.22011.22 + 3.22011.24

   = 3.22011.(1 + 22 + 24)

   =  3.22011.21 \(⋮\)21

=> A \(⋮\) 21

Bình luận (0)
 Khách vãng lai đã xóa
IR
8 tháng 12 2019 lúc 20:12

Ta có : A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016

   = (22011 + 22012) + (22013 + 22014) + (22015 + 22016)

   = 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)

   = 3.22011 + 3.22011.22 + 3.22011.24

   = 3.22011.(1 + 22 + 24)

   =  3.22011.21 \(⋮\)21

=> A \(⋮\) 21 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa