Những câu hỏi liên quan
NT
Xem chi tiết
H24
9 tháng 4 2020 lúc 11:02

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
TB
Xem chi tiết
NV
Xem chi tiết
NC
9 tháng 8 2019 lúc 11:50

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

Bình luận (0)
NM
Xem chi tiết
ST
26 tháng 8 2018 lúc 15:45

Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự

Bình luận (0)
H24
30 tháng 8 2018 lúc 10:14

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Mà \(a+b+c=2019\)

\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)

Bình luận (0)
QT
Xem chi tiết
MN
Xem chi tiết
KN
9 tháng 11 2019 lúc 19:14

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2019}\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+b+c\right)\left(a+c\right)+ca\left(a+c\right)=0\)

\(\Leftrightarrow\left(ab+b^2+bc+ac\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Suy ra a + b = 0 hoặc b + c = 0 hoặc a + c = 0

Mà a + b + c = 2019 nên phải có 1 trong ba số a,b,c bằng 2019 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
GT
7 tháng 8 2020 lúc 8:55

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
DQ
Xem chi tiết
DL
25 tháng 2 2022 lúc 21:40

oh no bài thứ nhất là dạng chứng minh cs đúng ko ,

ko thể nào là dạng tìm a,b,c đc-.-

Bình luận (3)
HD
25 tháng 2 2022 lúc 23:05

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)

hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)

\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

-Xét a + b = 0 => P = 2022^2021

Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé

Bình luận (2)
HL
27 tháng 1 2023 lúc 22:16

a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0

(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0

(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0

  a=−b

  b=−c

  c=−a

Thay vào P từng cái rồi tính tiếp nhé

Bình luận (0)