Tìm tất cả các số nguyên dương x, y, biết:
x^y+y^x=100
Tìm tất cả các số nguyên dương x, y, biết:
x mũ y + y mũ x =100
( các bn lm nhanh trong chiều này và lm theo cách lp 6 nhé))))))
Xin lỗi nha, mik ấn nhầm, bài đó của lp 6
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Tìm tất các cặp số nguyên dương x, y thỏa mãn : x^(y)+y^(x) = 100
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
Khi đó:\(100=x^y+y^x\ge y^y+y^y=2y^y\)
\(\Rightarrow50\ge y^y\)
Với \(y>3\Rightarrow50\ge y^y>y^3\)
\(\Rightarrow4>\sqrt[3]{50}>y\)
\(\Rightarrow3< y< 4\left(KTM\right)\)
\(\Rightarrow y\le3\Rightarrow y\in\left\{1;2;3\right\}\)
Với \(y=1\)
\(\Rightarrow100=x^y+y^x=x+1^x=x+1\)
\(\Rightarrow x=99\left(TM\right)\)
Với \(y=2\)
\(\Rightarrow100=x^2+2^x\)
\(\Rightarrow2^x=100-x^2< 100\)
\(\Rightarrow x< 7\)
Mà x chẵn \(\Rightarrow x\in\left\{2;4;6\right\}\)
Thử vào thấy x=6 thỏa mãn.
Với \(y=3\)
\(\Rightarrow100=x^3+3^x\)
\(\Rightarrow x^3=100-3^x\)
\(\Rightarrow x< 5\)
Mà \(x\ge y\Rightarrow3\le x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Thử vào ta thấy không có x thỏa mãn.
Vậy các cặp số \(\left(x;y\right)\) cần tìm là:\(\left(99;1\right);\left(6;2\right)\) và các hoán vị của chúng
P/S:\(\left(h\right)\) là hoặc.
Ta có : 2 số x và y bình đẳng, không mất tính tổng quát
Các TH :
+ TH1: x = 1 => 1y + y1 = 100 => y + 1 = 100 => y = 99
Tìm được : x = 1 ; y = 99
+ TH2: x = 2 => 2y + y2 = 100 => 1 < y < 7 ( Nếu y = 1 thì lại rơi vào TH 1 )
Nếu : y = 6 => 26 + 62 = 100 ( T/m ) => Tìm đc x = 2; y = 6
y < 6 => 2y + y2 < 100 ( loại )
+ TH3 : x = 3 => 3y + y3 = 100 => 2 < y < 4
Nếu y = 3 => 33 + 33 = 54 < 100 ( loại )
+ TH4 : x \(\ge\)4 => 4y + y4 \(\ge\)44 + 44 = 512 > 100 ( y \(\ge\)4 vì nếu y < 4 sẽ rơi vào các TH trước )
Vậy ( x ; y ) = ( 1 ; 99 ) ; ( 99 ; 1 ) ; ( 2 ; 6 ) ; ( 6 ; 2 )
Tìm tất cả các số nguyên dương x,y,z thỏa mãn đồng thời các điều kiện:
x+y+z>11 và 8x+9y+10z=100
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Tìm tất cả các số hữu tỉ dương x,y thỏa mãn x+1/y và y+1/x là số nguyên dương
Tìm tất cả các số nguyên tố p và các số nguyên dương x,y thỏa mãn
\(199^x-2^x=p^y\)
Quy tắc chia hết cơ bản: với các số nguyên dương ta luôn có \(a^n-b^n\) chia hết \(a-b\)
Do đó \(199^x-2^x⋮197\)
\(\Rightarrow p^y⋮197\Rightarrow p⋮197\) (do 197 là số nguyên tố)
\(\Rightarrow p=197\)
Pt trở thành: \(199^x-2^x=197^y\)
- Với \(x=1\Rightarrow y=1\)
- Với \(x=2\Rightarrow199^2-2^2=197.201\) chia hết 201, trong khi \(197^y\) ko chia hết cho 201 (ktm)
- Với \(x\ge3\) \(\Rightarrow2^x⋮8\)
TH1: Nếu x lẻ \(\Rightarrow\)\(199^x\equiv-1\left(mod8\right)\Rightarrow199^x-2^x\equiv-1\left(mod8\right)\)
+ \(y\) chẵn \(\Rightarrow197^y\equiv5^y\left(mod8\right)\equiv5^{2k}\left(mod8\right)\equiv25^k\left(mod8\right)\equiv1\left(mod8\right)\) (ktm)
+ \(y\) lẻ \(\Rightarrow197^y\equiv5^{2k+1}\left(mod8\right)\equiv5.25^k\left(mod8\right)\equiv5\) (mod8) (ktm)
TH2:\(x\) chẵn \(\Rightarrow199^x\equiv1\left(mod8\right)\Rightarrow199^x-2^x\equiv1\left(mod8\right)\)
+ \(y\) lẻ \(\Rightarrow\) tương tự TH1 ta có \(197^y\equiv5\left(mod8\right)\) (ktm)
\(\Rightarrow y\) chẵn
Khi x;y cùng chẵn, ta có \(199^x\equiv1\left(mod3\right)\) và \(2^x\equiv1\left(mod3\right)\)
\(\Rightarrow199^x-2^x⋮3\Rightarrow197^y⋮3\) (vô lý)
Vậy với \(x\ge3\) ko tồn tại bộ số nguyên dương nào thỏa mãn
Hay có đúng 1 bộ số thỏa mãn yêu cầu: \(\left(x;y;p\right)=\left(1;1;197\right)\)
tìm tất cả các số nguyên dương x,y thỏa mãn x^2 - 2y^2 = 9 và 50<x<100 HELP ME
Tìm tất cả số nguyên tố p và các số nguyên dương x,y thỏa mãn \(199^x-2^x=p^y\)
tìm tất cả các số nguyên dương x,y,z thỏa mãn x+y+z>11 và 8x+9y+10z=100
bn nào giỏi làm hộ cái
Tìm tất cả các số x, y nguyên dương, p nguyên tố thỏa mãn: x²-3xy+p²y² =12p.
Vì 12p ⋮ 3 nên x²-3xy+p²y² ⋮ 3 mà -3xy ⋮ 3 nên x²+p²y² ⋮ 3 kết hợp với tính chất 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên nếu tổng 2 chính phương ⋮ 3 thì cả 2 số⋮ 3. Từ đó x² và p²y² mà đây là 2 bình phương và 3 là số nguyên tố nên x² và p²y² ⋮ 9. Vì x2⋮ 9 nên x ⋮ 3 từ đó 3xy ⋮cho 9. Qua đó x²-3xy+p²y² ⋮ 9. Ta có 12p= 4.3p mà (4,9)=1 nên 3p ⋮ 9 từ đó p ⋮ 3 mà p là số nguyên tố nên p = 3.
=> x²-3xy+p²y² =12p <=> x²-3xy+9y² =36 áp dụng bất đẳng thức Cô si x2+y2 ≥ 2xy với mọi x,y => x²+9y²≥2.x.3y=6xy => 36≥6xy-3xy=3xy =>12≥xy mà x,y là số nguyên dương nên x.y ≥1 nên 12≥xy≥x.1=x
Ta có x²+(-3xy)+9y² chẵn mà đây là tổng 3 số nguyên nên tồn tại 1 số chẵn
nếu x chẵn => x²+(-3xy) chẵn => 9y² chẵn mà (9,2)=1 nên y chẵn ta cmtt với y. Từ đó suy ra cả x và y đều chẵn, kết hợp với 12≥x,x⋮3 và x nguyên dương => x∈{6,12} thay x vào x²-3xy+9y² =36 ta tìm được các cặp (x,y) là (6,0);(6,2);(12,6)
Vậy các cặp (x,y,p) cần tìm là (6,0,3);(6,2,3);(12,6,3)