Những câu hỏi liên quan
ND
Xem chi tiết
ND
8 tháng 3 2022 lúc 21:56

giúp mik vs ạ

Bình luận (2)
PD
Xem chi tiết
HC
Xem chi tiết
H24
8 tháng 6 2021 lúc 11:26

a)Ta có:`AB^2+AC^2=21^2+28^2=1225`

Mà `BC^2=1225`

Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`

`=>` tam giác ABC vuông

b)Vì BAC vuông tại A

`=>hat{BAC}=90^o`

`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`

Xét  tam giác HBA và tam giác HAC có"

`hat{HAB}=hat{HCA}`(CMT)

`hat{BHA}=hat{HAC}=90^o`

`=>`  tam giác HBA đồng dạng với tam giác HAC(gg)

Bình luận (0)
H24
8 tháng 6 2021 lúc 11:41

c)Xét tam giác ACH và tam giác BAC ta có:

`hat{AHC}=hat{BAC}=90^o`

`hat{ACB}` chung

`=>DeltaACH~DeltaBAC(gg)`

`=>(AC)/(BH)=(BC)/(AC)`

`=>AC^2=BH.BC`.

d)Đường phân góc gì nhỉ?

Bình luận (1)
TK
Xem chi tiết
PB
Xem chi tiết
CT
21 tháng 11 2018 lúc 11:19

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

Bình luận (0)
NC
Xem chi tiết
IS
5 tháng 4 2020 lúc 18:48

Câu 1 : mình chỉ cách để cậu sao chéo link này nha .Đầu tiên bạn ấn chuột phải . Rồi ấn zô chữ in , sau đó cậu kéo xuống câu hỏi của cậu , xong cậu sao chép cái link ở dưới này nhá . Ok . Olm ko chụp ảnh đc .

https://scontent-sin6-2.xx.fbcdn.net/v/t1.15752-9/92245240_146128493508405_8939038888257650688_n.jpg?_nc_cat=105&_nc_sid=b96e70&_nc_ohc=X9iGs2rfBIcAX-BKDc4&_nc_ht=scontent-sin6-2.xx&oh=6f79129823e83db81e1c7ec56963fb48&oe=5EAE20C6

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
ND
Xem chi tiết
TG
2 tháng 7 2021 lúc 15:35

Không có mô tả.

Bình luận (0)
MY
2 tháng 7 2021 lúc 15:36

a, theo pytago\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)

theo hệ thức lượng

\(=>AM.BC=AB.AC=>AM=\dfrac{12.16}{20}=9,6cm\)

theo ct lượng giác\(=>\sin C=\dfrac{AM}{AC}=\dfrac{9,6}{16}=>\angle\left(C\right)\approx36^o52'=>\angle\left(B\right)=53^08'\)

b, AM ý a, tính rồi, 

theo hệ thức lượng \(=>AB^2=BM.BC=>BM=\dfrac{12^2}{20}=7,2cm\)

c,theo hệ thứ lượng \(=>AE.AB=AM^2\left(1\right)\)

pytago\(AC^2-MC^2=AM^2\left(2\right)\)

(1)(2)=>đpcm

Bình luận (0)
H24
Xem chi tiết

cosB = (AB^2 +BC^2-AC^2)/(2.AB.BC) = (4^2 +5^2 -6^2)/(2.4.5) = 1/8
=> ^B = 92°
cosC = (CA^2 +CB^2 - AB^2)/(2.CA.CB) = (6^2+5^2-4^2)/(2.6.5)=3/4
=> ^C = 46°
Vậy ^B = 2^C (ĐPCM)

Bình luận (0)