Những câu hỏi liên quan
CC
Xem chi tiết
H24
Xem chi tiết
NM
7 tháng 3 2016 lúc 22:46

A=2015

Cần cách làm thì tích nha

Bình luận (0)
VC
Xem chi tiết
LH
Xem chi tiết
TC
Xem chi tiết
LT
Xem chi tiết
SS
30 tháng 3 2016 lúc 22:30

ở mẫu   n4+n2+1=(n2+n+1)(n2-n+1)

\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)

Bình luận (0)
NT
30 tháng 3 2016 lúc 21:49

0.4999998768

Bình luận (0)
TC
Xem chi tiết
NN
7 tháng 4 2016 lúc 20:12

de sai roi ban oi. coi lai gium

Bình luận (0)
HP
Xem chi tiết
HN
15 tháng 10 2016 lúc 20:41

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

Bình luận (0)
VK
15 tháng 10 2016 lúc 20:40

ki+e

n ejmfjnhcy

Bình luận (0)
TL
Xem chi tiết
HN
15 tháng 8 2016 lúc 10:31

Ta có : \(1+2=\frac{2.3}{2}\) , \(1+2+3=\frac{3.4}{2}\) ,

 \(1+2+3+4=\frac{4.5}{2}\) , ......... , \(1+2+3+4+....+2014=\frac{2014.2015}{2}\)

Suy ra : \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(2\left(\frac{1}{2}-\frac{1}{2015}\right)\)

Bình luận (0)
VT
15 tháng 8 2016 lúc 10:32

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)

\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)

\(A=1-\frac{2}{2015}\)

\(A=\frac{2013}{2015}\)

 

Bình luận (0)