Cho tam giác ABC nhọn có góc A bằng 60 độ và có 2 đường cao BD và CE Chứng minh: BC bằng 2 DE
Cho tam giác nhọn ABC có góc A bằng 60 độ, các đường cao BD và CE. Chứng minh rằng: SADE=1/4SABC
\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)
\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)
Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)
Tam giác ABC nhọn có AB<AC, góc A bằng 45 độ, các đường cao BD,CE cắt nhau tại H.
a. Chứng minh tam giác HED đồng dạng với tam giác HBC
b. Chứng minh tam giác AED đồng dạng với tam giác ABC
c. Tính DE khi BC bằng căn bậc 2
a. -Xét △BEH và △CDH có:
\(\widehat{BEH}=\widehat{CDH}=90^0\)
\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)
\(\Rightarrow\)△BEH∼△CDH (g-g).
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).
-Xét △HED và △HBC có:
\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)
\(\Rightarrow\)△HED∼△HBC (c-g-c).
b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).
\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).
Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)
\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)
-Xét △AED và △ACB có:
\(\widehat{AED}=\widehat{ACB}\) (cmt)
\(\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AED∼△ACB (g-g).
c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).
\(\Rightarrow\)△AEC vuông cân tại E.
\(\Rightarrow AE=AC\sqrt{2}\)
-Ta có: △AED∼△ACB (cmt)
\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)
\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow ED=2\)
Tam giác ABC nhọn, góc A = 60 độ, vẽ đường cao BD và CE. CMR: DE = 1/2 BC
cho đường tròn tâm o bán kính r dây cung BC cố định và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn các đường cao BD CE của tam giác cắt nhau tại H chứng minh tu giác aehd noi tiep b giả sử góc bac bằng 60 độ hãy tính BH theo giờ theo rồie
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
Cho tam giác ABC nhọn có góc BAC bằng 45 độ. Hai đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm của DE. Chứng minh rằng trọng tâm G của tam giác ABC nằm trên HI.
Cho tam giác nhọn ABC có góc A =60 độ và 2 đường phân giác BD và CE cắt nhau tại I. Chứng minh rằng tam giác IDE cân.
Cho tam giác nhọn ABC có góc A =60 độ và 2 đường phân giác BD và CE cắt nhau tại I. Chứng minh rằng tam giác IDE cân.
Bài 1: Cho tam giác ABC nhọn có 2 đường cao AH và BD. chứng minh CAH=CBD
Bài 2: Cho tam giác ABC nhọn có 2 đường cao AH và BD cắt nhau ở I. Giả sử^C=60. Tính BIH
Bài 3: Cho tam giác ABC nhọn có 2 đường cao BD và CE cắt nhau ở I. BIC kề bù với góc nào? C/M BIC bù với góc A.
Vẽ hình và giải giúp mình với.