Những câu hỏi liên quan
PT
Xem chi tiết
NA
Xem chi tiết
AH
7 tháng 1 2019 lúc 22:46

Lời giải:

Ta có:
\(a(b^2-1)(c^2-1)+b(a^2-1)(c^2-1)+c(a^2-1)(b^2-1)\)

\(=a(b^2c^2-b^2-c^2+1)+b(a^2c^2-a^2-c^2+1)+c(a^2b^2-a^2-b^2+1)\)

\(=(ab^2c^2+ba^2c^2+ca^2b^2)+(a+b+c)-[a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)]\)

\(=abc(ab+bc+ac)+abc-[ab(a+b)+bc(b+c)+ca(c+a)]\)

\(=abc(ab+bc+ca)+4abc-[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)]\)

\(=abc(ab+bc+ca)+4abc-(a+b+c)(ab+bc+ac)\)

\(=abc(ab+bc+ca)+4abc-abc(ab+bc+ac)=4abc\)

Ta có đpcm.

Bình luận (1)
PN
Xem chi tiết
HC
Xem chi tiết
NK
Xem chi tiết
TX
Xem chi tiết
VG
19 tháng 8 2017 lúc 8:37

1) ta có: a(b^2 -1)(c^2 -1)+b(a^2 -1)(c^2 -1)+c(a^2-1)(b^2-1)

=(ab^2 -a)(c^2-1)+(ba^2 -b)(c^2-1)+(ca^2-c)(b^2-1)

 đén đây nhân bung ra hết rồi rút gọn và thay a+b+c=abc là đc

Bình luận (0)
ND
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 6 2021 lúc 23:14

\(4b.ac+\left(a+c\right)^2\le4b.\dfrac{1}{4}\left(a+c\right)^2+\left(a+c\right)^2=\left(a+c\right)^2\left(b+1\right)\)

\(\Rightarrow T\ge\dfrac{1}{\left(a+c\right)^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2\left(a^2+c^2\right)}+\dfrac{1}{2\left(a^2+b^2\right)}\ge\dfrac{4}{2\left(2a^2+b^2+c^2\right)}\)

Bình luận (0)