tìm n\(\varepsilon\)Z để \(\frac{3n+1}{5-2n}\)là số nguyên
\(\frac{3n+1}{5-2n}\Leftrightarrow3n+1⋮5-2n\)
\(\Rightarrow3n+1⋮2n-5\)
\(\Rightarrow\left(2n-5\right)+11⋮2n-5\)
\(\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow2n-5=1;-1;11;-11\)
\(\Rightarrow2n=6;4;16;-6\)
\(\Rightarrow n=3;2;8;-3\)
Tìm n thuộc Z để :
\(\frac{3n+7}{2n+9}\)là số nguyên
Tìm n \(\varepsilon\)Z để \(\frac{3n^2+2n+3}{2n+1}\)không tối giản
Sorry mọi người nha, mình lỡ bấm sang \(\varepsilon\). Nó là \(\in\)đó các bạn
\(M=\frac{2n+3}{2n+1}.\)Tìm n\(\varepsilon\)Z để M là số nguyên
K biết đúng hay sai nghe
Để M là số nguyên <=> 2n+3 chia hết cho 2n+1
=> (2n+3)-(2n+1)chia hết cho 2n+1
=>2n+3-2n-1 chia hết cho 2n+1
=>2 chia hết cho 2n+1
=>2n+1\(\in\)Ư(2)={1;-1;2;-2}
2n+1 | 1 | -1 | 2 | -2 |
2n | 0 | -2 | 1 | -3 |
n | 0\(\in\)Z | -1\(\in\)Z | 0,5\(\notin\)Z | -1,5\(\notin\)Z |
Vậy n\(\in\){0;-1}
Cho \(A=\frac{2n+9}{n-3}\)(n \(\varepsilon\) z ;n + 3)
a) Tìm n để A có giá trị là số nguyên.
b) Tìm n \(\varepsilon\) z để A có giá trị lớn nhất.
Tìm giá trị lớn nhất đó.
tìm n thuộc Z để A,B là các số nguyên.
A=\(\frac{3n+9}{n-4}\); B=\(\frac{6n+5}{2n-1}\)
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
1. tìm x thuộc z:
\(\frac{x-2}{15}=\frac{9}{5}\) \(\frac{2-x}{16}=\frac{-4}{x-2}\)
Tìm số nguyên n để phân số \(\frac{2n+5}{3n+7}\)tối giản voi n thuộc N*
Tìm số nguyên n để phân số \(\frac{14}{2n+1}\) rút gon đc
#)Giải :
1.
\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)
\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)
P/s : Câu thứ hai cứ sao sao ý
a) x - 2/15 = 95
<=> 15.(x - 2)/15 = 9.15/5
<=> x - 2 = 27
<=> x = 27 + 2
<=> x = 29
=> x = 29
b) 2 - x/16 = -4/x - 2
<=> (2 - x)(x - 2) = (-4).16
<=> -x2 + 4x - 4 = -64
<=> -x2 + 4x - 4 - (-64) = 0
<=> -x2 + 4x - 4 + 60 = 0
<=> (-x - 6)(x - 10) = 0
-x - 6 = 0 hoặc x - 10 = 0
-x = 0 + 6 x = 0 + 10
-x = 6 x = 10
x = -6
=> x = -6 hoặc x = 10
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)