2xy - x + 6y = 21
x;y thuộc N, biết 2xy+x-6y=21
giá trị nhỏ nhất của biểu thức 2x^2+2y^2-2xy-6y+21
Tìm GTNN của \(2x^2+2y^2-2xy-6y+21\)
violympic có bài này á, chưa gặp bao giờ
Tìm GTNN của biểu thức :
\(2x^2+2y^2-2xy-6y+21\)
\(2x^2+2y^2-2xy-6y+21\)
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12y+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)
\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
Vậy GTNN là 30
Cho mk sủa lại tí :
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15
Cho x, y thỏa mãn: x2 + 4y2 + 2xy + 6x - 6y = - 21
Tính giá trị của biểu thức M = ( x + 2y )2014 + ( x + y + 2 )2014
Tìm GTNN của biểu thức sau:
2x2 + 2y2 + 2xy - 6y + 21
2x2 + 2y2 + 2xy - 6y + 21
= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15
= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15
= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)
Vậy GTNN là 15 đạt được khi x = - 1, y = 2
\(GTNN\) của \(P=2x^2+2y^2-2xy-6y+21\)
Thu gọn và tính giá trị của đa thức P = 3x ^ 2 * y ^ 2 - x ^ 3 - 2xy + 6y ^ 2 + 3x ^ 2 + 2xy - 6y ^ 2 * t x = - 2 ; y = - 2.
Thu gọn và tính giá trị của đa thức P = 3x ^ 2 * y ^ 2 - x ^ 3 - 2xy + 6y ^ 2 + 3x ^ 2 + 2xy - 6y ^ 2 * t x = - 2 ; y = - 2
P=3x^2y^2-x^3-2xy+6y^2+3x^2+2xy-6y^2
=3x^2y^2+3x^2-x^3
=3*(-2)^2*(-2)^2+3*(-2)^2-(-2)^3
=68