So sánh
\(A=\dfrac{1+a}{1+a+a^2} \) và \(B= \dfrac{1+b}{1+b+b^2} \) với a > b > 0
Cho a,b,n thuộc Z; b,n>0.
a) Chứng minh: \(\dfrac{a}{b}>1\Leftrightarrow a>b\) và \(\dfrac{a}{b}< 1\Leftrightarrow a< b\)
b) So sánh 2 số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
c) So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+n}{a+n}\)
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Bài 2: A = \(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\) và B = \(\dfrac{1}{x-1}\)
a) Tính giá trị của B khi \(x^2-8x+7=0\)
b) Chứng tỏ A = \(\dfrac{2x^2+1}{x^3-1}\)
c) Rút gọn S = A - B
d) Tìm x để S = \(\dfrac{1}{3}\)
e) So sánh S với $\frac{1}{3}$
a) ĐKXĐ: \(x\ne1\)
Ta có: \(x^2-8x+7=0\)
\(\Leftrightarrow x^2-x-7x+7=0\)
\(\Leftrightarrow x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=7\left(nhận\right)\end{matrix}\right.\)
Thay x=7 vào B, ta được:
\(B=\dfrac{1}{7-1}=\dfrac{1}{6}\)
Vậy: Khi \(x^2-8x+7=0\) thì \(B=\dfrac{1}{6}\)
b) Ta có: \(A=\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+2+x^2-1}{x^3-1}\)
\(=\dfrac{2x^2+1}{x^3-1}\)
c) Ta có: S=A-B
\(=\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)
\(=\dfrac{2x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x}{x^2+x+1}\)
Bài 3:Cho biểu thức B=\(\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\).\(\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)(với a>0 và a khác 1)
a)rút gọn B
b)Đặt C=B.(\(a-\sqrt{a}+1\)).So sánh C và 1
a: Ta có: \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{6\sqrt{a}-6+10-2\sqrt{a}}{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}\)
\(=\dfrac{4\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\dfrac{1}{4\sqrt{a}}\)
\(=\dfrac{1}{\sqrt{a}}\)
a) \(B=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{a\sqrt{a}-a-\sqrt{a}+1}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\left(\dfrac{6}{a-1}+\dfrac{10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right).\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{6\left(\sqrt{a}-1\right)+10-2\sqrt{a}}{\left(a-1\right)\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{4\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)^2}{4\sqrt{a}}=\dfrac{1}{\sqrt{a}}\)
b) \(C=B.\left(a-\sqrt{a}+1\right)=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}=\sqrt{a}-1+\dfrac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\dfrac{1}{\sqrt{a}}}-1=1\)(bất đẳng thức Cauchy cho 2 số dương)
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
So sánh A và B :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(B=\dfrac{1}{2}\)
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
Cho và , so sánh 1/a và 1/b
\(\frac{1}{a}\)<\(\frac{1}{b}\)
Câu 5 : A= \(\dfrac{1}{2}\) +\(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ....+\(\dfrac{1}{2^{2021}}\)+\(\dfrac{1}{2^{2022}}\)và B= \(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{17}{60}\)
a) Rút gọn A
b) So sánh A và B
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2022}}\) và \(B=1-\dfrac{1}{3^{2021}}\)
So sánh A và B
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2022}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2021}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{2022}}$
$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{2022}}$
Xét hiệu:
$A-B=\frac{1}{2}-\frac{1}{2.3^{2022}}-(1-\frac{1}{3^{2021}})$
$=\frac{1}{3^{2021}}-\frac{1}{2.3^{2022}}-\frac{1}{2}$
$=\frac{5}{2.3^{2022}}-\frac{1}{2}$
$< \frac{1}{2}-\frac{1}{2}=0$
$\Rightarrow A< B$
`A = 1/3 +1/3^2 +1/3^3 +...+1/3^2022`
`<=> 3A = 1 +1/3 +1/3^2 +...+ 1/3^2021`
`=>2A =3A-A =1+1/3 +1/3^2 +..+ 1/3^2021 - 1/3-1/3^2-1/3^3..-1/3^2022`
`2A = 1-1/3^2022`
`=> A = (1-1/3^2022) :2`
Ta thấy `1- 1/3^2022 < 1-1/3^2021`
`=> (1 -1/3^2022):2<1-1/3^2021`
Hay `A<B`