Những câu hỏi liên quan
PT
Xem chi tiết
HF
Xem chi tiết
H24
18 tháng 8 2019 lúc 18:27

Theo ( 1 ), tính theo mod p, ta có 

\(-1\equiv\left(p-1\right)!\equiv\left(n-1\right)!n\left(n+1\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(p-\left(n-p\right)\right)\left(p-\left(p-n-1\right)\right)...\left(p-1\right)\)

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)\left(p-n-1\right)\) )...1

\(\equiv\left(n-1\right)!\left(-1\right)^{p-n}\left(p-n\right)!\)

\(\equiv\left(n-1\right)!\left(-1\right)^{n-1}\left(p-n\right)!\) ( vì p lẻ )

Cbht

Bình luận (0)
SJ
Xem chi tiết
WM
Xem chi tiết
LP
Xem chi tiết
LP
2 tháng 8 2023 lúc 19:44

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

Bình luận (0)
XO
3 tháng 8 2023 lúc 15:59

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

Bình luận (0)
CX
Xem chi tiết
KN
20 tháng 2 2018 lúc 14:32

Ta có

2n+5  chia hết cho n-1

Tách 2n+5=2n-1+6

Vì 2n-1 đã chia hết cho n-1 nên 6 phải chia hết cho n-1

Suy ra n-1 thuộc ước của 6

Mà ước của 6=

là 1;-1;2;-2;3;-3;6;-6.

Rồi sau đo bạn thử n-1 với từng trường hợp

Thấy n nào nguyên tố thì đó là đáp an

Bình luận (0)
NN
Xem chi tiết
HS
10 tháng 4 2018 lúc 20:21

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

Bình luận (0)
TN
Xem chi tiết
H24
13 tháng 6 2020 lúc 12:22

A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4

4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]

4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)

4A = n(n+1)(n+2)(n+3)

A = n(n + 1)(n+2)(n + 3) : 4

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết