Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CM: \(2^{2n}.\left(2^{2n+1}-1\right)-1⋮9\left(n\inℕ^∗\right)\)
1. Gpt nghiệm nguyên dương \(\left(x+1\right)\left(y+z\right)-2=xyz\)
2. Gpt nghiệm nguyên \(x+y+z=3\)và \(x^3+y^3+z^3=3\)
3. Tìm \(a,b\inℕ^∗\)sao cho \(a+b=2^{2019}\)và \(ab=2^n+1\)\(\left(b>a>1\right)\)
4. Tìm p nguyên tố sao cho 2p +1 là lập phương một số tự nhiên
5. Cho \(x,y,z\inℕ^∗\)và đôi một nguyên tố cùng nhau và \(-\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\). C/m \(x+y\)là số chính phương.
6. C/m \(13^n\times2+7^n\times5+26\)không là số chính phương.
\(n\ge3;n\inℕ\)
CMR:
\(\frac{1}{a^n\left(b+c\right)}+\frac{1}{b^n\left(c+a\right)}+\frac{1}{c^n\left(a+b\right)}\ge\frac{3}{2}\)
Cho \(n\inℕ^∗\)CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
Cho \(n\inℕ^∗\) CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
CMR: \(\left|\sin1\right|+\left|\sin2\right|+...+\left|\sin3n\right|>\frac{8}{5}n,\forall n\inℕ^∗\)
Cho \(A=n!+1,B=n+1\left(n\inℕ^∗\right)\). Chứng minh rằng nếu A chia hết cho B thì B là số nguyên tố
cho\(n\inℕ^∗\)
CMR:\(\left(n^4+2015\cdot n^2\right)⋮12\)
Giải và biện luận phương trình:
\(\left(x-a\right)^n=a^2-2a+1\) với \(n\inℕ^∗\) ,a là tham số