\(\sqrt{9765+\sqrt{1296}}+\sqrt{15+\sqrt{95481}}+\sqrt{1271+\sqrt{625}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{13+\sqrt{29+\sqrt{49}}}+x=\sqrt[3]{1000}-\sqrt{23+\sqrt{5893+\sqrt{1296}}}\)
\(\sqrt{13+\sqrt{29+\sqrt{49}}}+x=\sqrt[3]{1000}-\sqrt{23+\sqrt{5893+\sqrt{1296}}}\)
\(\sqrt{13+\sqrt{29+\sqrt{49}}}+x=\sqrt[3]{1000}-\sqrt{23+\sqrt{5893+\sqrt{1296}}}\)
giải đi mình tích cho nhưng chỉ 3 bài thui:
\(\sqrt{\frac{5}{24}}=...\)
\(\sqrt{625}=...\)
\(\sqrt{1296}=...\)
\(\sqrt{\frac{196}{1024}}=...\)
\(\sqrt[3]{25}=...\)
5 bài nha! Cấm dùng máy tính!
Tính:
a) \(\sqrt[3]{5}:\sqrt[3]{{625}};\)
b) \(\sqrt[5]{{ - 25\sqrt 5 }}.\)
a: \(=\sqrt[3]{\dfrac{5}{625}}=\sqrt[3]{\dfrac{1}{125}}=\dfrac{1}{5}\)
b: \(=\sqrt[5]{\left(-\sqrt{5}\right)^5}=-\sqrt{5}\)
So sánh:
a, \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\);
b, \(\sqrt{7}+\sqrt{15}\) và \(7\)
c, \(\sqrt{625}-\dfrac{1}{\sqrt{5}}\) và \(\sqrt{576}-\dfrac{1}{\sqrt{6}}+1\)
* Rút gọn các biểu thức
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-4}.\sqrt[3]{2}\)
c. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-3\sqrt{8}\)
d. \(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}\)
a, \(=>3-\sqrt{2}+\sqrt{50}=3-\sqrt{2}+5\sqrt{2}=3+4\sqrt{2}\)
b, \(=>\dfrac{\sqrt[3]{125.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-4\right).2}=\sqrt[3]{125}-\sqrt[3]{\left(-2\right)^3}\)
\(=5-\left(-2\right)=7\)
c, \(=>\sqrt{6}.\sqrt{\dfrac{6}{2}}-\sqrt{2}-3\sqrt{4.2}=\sqrt{6}.\sqrt{3}-\sqrt{2}-6\sqrt{2}\)
\(=\sqrt{18}-7\sqrt{2}=3\sqrt{2}-7\sqrt{2}=-4\sqrt{2}\)
d, \(=>\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{3-\sqrt{3}-2}{\sqrt{3}-1}=\dfrac{1-\sqrt{3}}{\sqrt{3}-1}=-1\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}=\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}.\)
\(=\sqrt[3]{6^3}.\sqrt{95^2}.\sqrt[3]{5^3}+\sqrt{25^2}\)
\(=6.95.5+25\)
\(=2850+25=2875\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}\)
\(=\sqrt[3]{6^3}.\sqrt{95^2}.\sqrt[3]{5^3}+\sqrt{25^2}\)
\(=6.95.5+25\)
\(=570.5+25\)
\(=2850+25=2875\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)