giải pt : x^3+2x^2+2x+1=4^y(y thuộc N , x thuộc Z )
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
1) Cho hệ phương trình:
(k+1)x + (3k+1)y = 2-k
(2x + (k+2)y = 4. Tìm k để x và y thuộc Z
2) giải pt
a) x² - 4x - 6= √2x²-8x-12
b) (4x+1)(12x-1)(3x+2)(x+1)=4
2)
a) ĐK: \(2x^2-8x-12\ge0\)(1)
Nhân 2 cả hai vế ta có:
\(2x^2-8x-12=2\sqrt{2x^2-8x-12}\)
Đặt: \(\sqrt{2x^2-8x-12}=t\left(t\ge0\right)\)
Ta có phương trình: \(t^2=2t\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)(tm)
+) Với t=0 ta có:\(\sqrt{2x^2-8x-12}=0\Leftrightarrow2x^2-8x-12=0\Leftrightarrow x^2-4x-6=0\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}\)( thỏa mãn đk (1))
+) Với t=2 ta có: \(\sqrt{2x^2-8x-12}=2\Leftrightarrow2x^2-8x-12=4\Leftrightarrow x^2-4x-8=\Leftrightarrow\orbr{\begin{cases}x=2+2\sqrt{3}\\x=2-2\sqrt{3}\end{cases}}\)( THỎA MÃN đk (1))
vậy ...
b) pt <=> \(\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)=4\)
<=> \(\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)
Đặt :\(12x^2+11x+2=t\)
Ta có pt: \(t\left(t-3\right)=4\Leftrightarrow t^2-3t-4=0\Leftrightarrow\orbr{\begin{cases}t=4\\t=-1\end{cases}}\)
Với t=4 ta có: ....
Với t=-1 ta có:...
Em tự làm tiếp nhé
1. tìm các số nguyên x và y biết (2x+1).(y-4)=12
2. Tìm n thuộc Z biết (n-7) chia hết cho (n+1)
3. tìm x thuộc Z biết /x+3\+2<4
MONG CÁC BẠN GIÚP MÌNH GIẢI HẾT
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
1. tìm các số nguyên x và y biết (2x+1).(y-4)=12
2. Tìm n thuộc Z biết (n-7) chia hết cho (n+1)
3. tìm x thuộc Z biết /x+3\+2<4
MONG CÁC BẠN GIÚP MÌNH GIẢI HẾT MONG ĐỪNG GHI CÂU HỎI TƯƠNG TỰ
mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk
Tìm x,y thuộc Z:
a, (x-3)^2+(y+2)^2=0
b,2x+2^x+3=136
c,42-3./y-3/=4.(2042-x)^4
d,/x+5/+(3y-6)^2010=0
e,(2x-4)^2008+(y-4)^2008+/x+y+z/=0
g,(3x-6)^2006+(y^2-1)^2008+(x-z)^2100=0
h,8.2^3x.7^y=56^2x.5^x-1
i, x^3-y^3-z^3=3xyz và x^2=2.(y+z) (x,y,z thuộc N*)
tìm các nghiệm nguyên của pt :
a, x4 + 2x7y - x14 - y2 = 7 (x;y thuộc Z+ )
b, 2x2 + 2xy - x +y = 112 (x;y thuộc Z+ )
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)
Giải giúp 2 bài sau nha mọi người
Thanks nhìu
1. Giải hệ pt: \(\left\{{}\begin{matrix}x^2+2xy-2x-y=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)
2. Tìm x, y thuộc Z sao cho \(x^4-x^3+1=y^2\)
1.\(\left\{{}\begin{matrix}x^2+2xy-2x-y=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y\right)\left(x-1\right)=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1^4-4\left(1+y-1\right)1^2+y^2+2.1.y=0\end{matrix}\right.\)(1)
hoặc \(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(x-2x-1\right)x^2+\left(-2x\right)^2+2x.\left(-2x\right)=0\end{matrix}\right.\)(2)
(1)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1-4y+y^2+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y^2-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
(2)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(-x-1\right)x^2+4x^2-4x^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x^2+4x+4\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)
Vậy nghiệm của hệ pt là (1;1),(0;0),(-2;4)
2. \(x^4-x^3+1-y^2=0\)
\(\Leftrightarrow x^3\left(x-1\right)+\left(1-y\right)\left(1+y\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3\left(x-1\right)=0\\\left(1-y\right)\left(1+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)(tm)hoặc\(\left\{{}\begin{matrix}x=1\\y=\pm1\end{matrix}\right.\)(tm)
Vậy nghiệm nguyên cuar pt là (0;1),(0;-1),(1;1),(1;-1)
Câu 1:
\(\left\{\begin{matrix} x^2+2xy-2x-y=0(1)\\ x^4-4(x+y-1)x^2+y^2+2xy=0(2)\end{matrix}\right.\)
Bình phương (1)
\((x^2+2xy-2x-y)^2=0\)
\(\Leftrightarrow (x^2+2xy)^2+(2x+y)^2-2(x^2+2xy)(2x+y)=0(3)\)
Lấy \((3)-(2)\) thu được:
\(4x^3y+4x^2y^2-6x^2y-4xy^2+2xy=0\)
\(\Leftrightarrow 2xy[2x^2+2xy-3x-2y+1]=0\)
\(\Leftrightarrow 2xy[2x(x-1)+2y(x-1)-(x-1)]=0\)
\(\Leftrightarrow 2xy(2x+2y-1)(x-1)=0\)
Do đó xét các TH sau:
TH1: \(x=0\) thay vào (1) suy ra \(y=0\)
TH2: \(y=0\Rightarrow x^2-2x=0\Leftrightarrow x=0;2\)
TH3: \(x=1\). Thay vào (1) suy ra \(y=1\). Thử lại thấy đúng.
TH4: \(2x+2y-1=0\)
\((1)\Rightarrow (x+y-1)^2=y^2-y+1\)
\(\Leftrightarrow y^2-y+1=(\frac{1}{2}-1)^2=\frac{1}{4}\)
\(\Leftrightarrow y^2-y+\frac{3}{4}=0\)
\(\Leftrightarrow (y-\frac{1}{2})^2+\frac{1}{2}=0\) (vô lý)
Vậy \((x,y)=(0,0); (2,0); (1,1)\)
Bài 3:Chứng minh biểu thức không phụ thuộc vào biến
1, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)- (y\(^2\)+1)(y\(^2\)-1)
3, x(y-z) + y(z-x) +z(x-y)
4, x(y+z-yz) -y(z+x-xz)+z(y-x)
5, x(2x+1) - x\(^2\)(x+2)+x\(^3\)-x+3
6, x (3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
`@` `\text {Ans}`
`\downarrow`
`1,`
\((y-5)(y+8)-(y+4)(y-1)\)
`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`
`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`
`= y^2+8y-5y-40 - y^2+y-4y+4`
`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`
`= -36`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`2,`
\(y^4-(y^2+1)(y^2-1)\)
`= y^4 - [y^2(y^2-1)+y^2-1]`
`= y^4- (y^4-y^2 + y^2-1)`
`= y^4-(y^4-1)`
`= y^4-y^4+1`
`= 1`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`3,`
\(x(y-z) + y(z-x) +z(x-y)\)
`= xy-xz + yz - yx + zx-zy`
`= (xy-yx) + (-xz+zx) + (yz-zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`4,`
\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)
`= xy+xz-xyz - yz - yx + yxz + zy - zx`
`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`5,`
\(x(2x+1)-x^2(x+2)+x^3-x+3\)
`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`
`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`
`= 3`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`6,`
\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)
`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`
`= -3x^3 + 3x^2 + 16`
Bạn xem lại đề bài.
`\text {#KaizuulvG}`
2, Tìm x, y,z biết 3(x-1)=2(y-2); 4(y-2)=3(z-3)
và 2x+3y-z=50
3,Tìm n thuộc Z sao cho 2n-3 chia hết cho n+1
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah