Những câu hỏi liên quan
PH
Xem chi tiết
YN
3 tháng 2 2022 lúc 21:11

Answer:

a. \(S=1+3+5+...+2009+2011\)

Số các số hạng của tổng: \(\left(2011-1\right):2+1=1006\) số hạng

Có \(S=\frac{\left(2011+1\right).1006}{2}=1012036\)

Mà \(1012036=1006^2\)

Vậy S là một số chính phương.

b. \(1012036=2^2.503^2\)

Vậy ước nguyên tố của \(S=\left\{2;503\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
AS
Xem chi tiết
DH
1 tháng 8 2021 lúc 0:59

a) b) \(S=1+3+5+...+2009+2011\)

Tổng trên là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị. 

Số số hạng của tổng trên là: \(\left(2011-1\right)\div2+1=1006\)

Giá trị của tổng trên là: \(S=\left(2011+1\right)\times1006\div2=2012\times1006\div2=1006^2=1012036\)

c) Phân tích thành tích cách thừa số nguyên tố: \(1006=2.503\)

Nên cách ước nguyên tố của \(S\)là \(2,503\).

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
DH
Xem chi tiết
NH
Xem chi tiết
MT
9 tháng 3 2015 lúc 16:55

a) theo công thức tính tổng: S=1+2+3...+n=(n.(n+1))/2

=>S=1+3+5...+2011=1+2+3+...+2010+2011-(2+4+6...+2010)

      =1+2+3+...+2010+2011-2(1+2+3+...+1005)

      =2011.2012/2 -2(1005.1006/2) =1012036

1012036 có tận cùng =6 và 1012036=2^2.503^2 (số mũ chẳn) , 1012036=1006^2

=> 1012036 là số chính phương.

b) 1012036=2^2.503^2 => ước nguyên tố của S= {2;503}

Bình luận (0)
KT

pac man

Bình luận (0)
NH
Xem chi tiết
DH
3 tháng 4 2016 lúc 9:03

Có : 1 + 3 + 5 + ... + 2009 + 2011 = \(\frac{\left(2011+1\right)\left(\frac{2011-1}{2}+1\right)}{2}=\frac{2012}{2}.1006=1006.1006=1006^2\)

Vậy S là số chính phương

Bình luận (0)
LH
3 tháng 4 2016 lúc 9:06

S có số các số hạng là:

\(\frac{2011-1}{2}+1=1006\)(số)

\(\Rightarrow S=\frac{1006.\left(1+2011\right)}{2}=1006.\frac{2012}{2}=1006.1006=1006^2\left(=1012036\right)\)

Do đó S là số chính phương.

Ta có:

\(1006^2=2^2.503^2\)

Vậy các ước nguyên của S sẽ là:

\(1;2;4;503;1006;2012;253009;506018;1012036;-1;-2;-4;\)

\(-503;-1006;-2012;-253009;-506018;-1012036\)

Bình luận (0)
LN
Xem chi tiết
NT
Xem chi tiết
TK
17 tháng 3 2016 lúc 22:21

a) S = [(1 + 2011) x ( 2011 - 1) : 2 + 1] : 2 = 1006 x 1006 = 1012036

=> 10062 = Số chính phương

b) Các ước nguyên tố khác nhau: 1012036 = 2 . 2 . 253009

=> Có 2 ước nguyên tố là 2 và 253009

Bình luận (0)
TH
Xem chi tiết
H24
8 tháng 6 2017 lúc 15:02

Câu hỏi của Nguyên Minh Hiếu - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
TT
8 tháng 6 2017 lúc 15:11

a) Tính

Theo công thức tính tổng : S = 1+2+3+....+n= ( \(\dfrac{n.\left(n+1\right)}{2}\)

\(\Rightarrow S=1+3+5+.....+2009+2011=1+2+3+...+2010+2011-\left(2+4+6+...+2010\right)\)= \(1+2+3+...+2010+2011-2\left(1005.\dfrac{1006}{2}\right)=1012036\)

b) Chứng tỏ S là một số chính phương.

\(1012036\) có tận cùng bằng 6 và 1012036 = 22.5032 ( số mũ chẵn ) , 1012036 = 10062

\(\Rightarrow1012036\) là số chính phương .

Bình luận (0)
VT
10 tháng 7 2017 lúc 9:40

Cho S = 1+3+5+...+2009+2011

a) Tính :

Theo công thức: S = 1+2+3+...+n \(\left(\dfrac{n.\left(n+1\right)}{2}\right)\)=> S=1+3+5...+2011 = 1+2+3+...+2011 - (2+4+6+...2010)=1+2+3+...+2010+2011-2

\(\left(1005.\dfrac{1006}{2}\right)\)=1012036.

b) Chứng tỏ S là một số chính phương.

1012036 có tận cùng = 6 và 1012036 = 22.5032(số mũ chẵn);1012036=10062.

=> 1012036 là số chính phương.

Bình luận (0)