Rút Gọn: B= (2x-3)(4x^2+6x+9)-(x+1)^2-(x-2)^3
Rút gọn:
A= (2x+3) (4x^2-6x+9)-2(4x^3-1)
B= (x-1)^3-(x+1)^3+6(x+1)(x-1)
\(\left(+\right)A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right).\)
\(A=8x^3-6x^2-18x+27-8x^3+2\)
\(A=6x^2-18x+29\)
\(\left(+\right)B=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x-1\right)\left(x+1\right)\)
\(B=x^3-3x^2+3x+1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(B=-6x^2+6x^2-6\)
\(B=-6\)
Bài 1: Rút gọn
A = (3x - 1) ² + 2(3x -1) (2x+1) + (2x +1) ²
B = (2x +3) (4x ² - 6x + 9) + 8(1 - x) (1 +x +x ²)
A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
A = \(\left(3x-1+2x+1\right)^2\)
A)
<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2
<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1
<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1
<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1
<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)
<=> 25x^2
B)
<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)
<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3
<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)
<=> 35
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
Bài 3. Rút gọn biểu thức: a)x+3+√x² - 6x +9 (x ≤3) b)√x² + 4x +4-√√x² (-2≤x≤0) C)√x²-2x+1 phần x-1 -(x>1) d) x-2/+ √x²-4x+4 x-2 (x1. F,2(a−1) –5a Với a0
a: A=x+3+|x-3|
=x+3+3-x(x<=3)
=6
b:\(B=\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
=x+2-x=2
c: \(C=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{x-1}=\dfrac{x-1}{x-1}=1\)
rút gọn phân thức
a)
(𝑥 − 1)^2/𝑥^2 − 1
b)
x^2 − 16/4x − x^2
c)
x^2 + 6x + 9/2x + 6
d)
x^2 + x/x^2 + 4x + 3
e)
𝑥^2 − 𝑥 + 1/𝑥^3 + 1
f)
(x + y)^2 − z^2/x + y + z
\(a,\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\\ b,\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(4-x\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(x+4\right)}{x}\\ c,\dfrac{x^2+6x+9}{2x+6}=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)
\(d,\dfrac{x^2+x}{x^2+4x+3}=\dfrac{x\left(x+1\right)}{\left(x^2+x\right)+\left(3x+3\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)+3\left(x+1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\dfrac{x}{x+3}\)
\(e,\dfrac{x^2-x+1}{x^3+1}=\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x+1}\\ f,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
Rút gọn biểu thức
(5x+1)(x^2-1)-(2x-3)(4x^2-6x+9)
mình chỉ biết làm một nửa k biết có đứng k bạn có chắc đề bài đúng k
5x^2 - 1^2 - (2x^3-3^3)= (5x^2-1x^2)-(2x^3-3^3) hdt số 3 và số 7
Kết quả rút gọn biểu thức (2x - 3) (4x^2 + 6x + 9) - 2 ( 4x^3 - 25) là x =
rút gọn biểu thức
a)(x+y)^2-(x-y)^2
b)2.(x+y).(x-y)+(x+y)^2+(x-y)^2
c)(x+3).(x^2-3x+9)-(54+x^3)
d)(2x+y).(4x^2-2xy+y^2)-(2x-y)
e)(6x+1)^2+(6x-1)^2-2.(6x+1).(6x-1)
f)(a-b)^3-(a+b)^3+2b^3
câu c (x+3)(x^2-3x+9)-(54+x^3)=x^3+27-54-x^3
=27
Rút gọn biểu thức
A = (1-2x)(4x2+2x+1)+8(x-1)(x2+x+1)
B = (5x+5)2+10(x-3)(1+x)+x2-6x+9