Tìm x
c/ | 2x - 10 | + 2x -10 = 0
Tìm xEZ, biết
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\in\) {-2023; 2024}
Bài 3: Tìm x biết:
a. \(2x+10=0\)
b. \(-2x+5=0\)
c. \(4-x=0\)
d. \(2x+1=0\)
e. \(x^2+2=0\)
f. \(2x+x=0\)
a)\(=>2x=-10=>x=-5\)
b)\(=>-2x=-5=>x=\dfrac{-5}{-2}=\dfrac{5}{2}\)
c)\(4-x=0=>x=4-0=4\)
d)\(=>2x=-1=>x=-\dfrac{1}{2}\)
e)\(=>x^2=-2\)=> x ko tồn tại
f)\(=>x\left(2+1\right)=0=>3x=0=>x=0\)
3. Tìm x, biết: a) 2x + 8 ≤ 0 b) 4x-7 ≥ 2x -5 c) (2x-8)(15-3x)>0 d) (10-2x)(8+2x)≤0
a) 2x+8≤ 0
⇔2x≤-8
⇔x≤-4
b) 4x-7 ≥ 2x -5
⇔2x-12 ≥ 0
⇔2x≥12
⇔x≥6
c) (2x-8)(15-3x)>0
TH1: 2x-8>0 ⇒x>4
15-3x>0⇒x<5
TH2: 2x-8<0 ⇒x<4
15-3x<0⇒x>5 (vô lí)
vậy 4<x<5
Tìm x :
a) 3x( x - 10 ) = x - 10
b) x( x + 7 ) - ( 4x + 28 ) = 0
c) x( x - 4 ) = 2x - 8
d) ( 2x + 3 )( x - 1 ) + ( 2x - 3 )( x - 1 ) = 0
3x(x - 10) = x - 10
(x - 10)(3x - 1) = 0
Th1:
x - 10 = 0
x = 10
TH2:
3x - 1 = 0
3x = 1
x = 1/3
Vậy x = 10 hoặc x = 1/3
x(x + 7) - (4x + 28) = 0
x(x + 7) - 4(x + 7) = 0
(x + 7)(x - 4) = 0
Th1:
x + 7 = 0
x = - 7
Th2:
x - 4 = 0
x = 4
Vậy x = - 7 hoặc x = 4
x(x - 4) = 2x - 8
x(x - 4) - 2(x - 4) = 0
(x - 2)(x - 4) = 0
Th1:
x - 2 = 0
x = 2
Th2:
x - 4 = 0
x = 4
Vậy x = 2 hoặc x = 4
(2x + 3)(x - 1) + (2x - 3)(x - 1) = 0
(x - 1)(2x + 3 + 2x - 3) = 0
4x(x - 1) = 0
Th1:
x = 0
Th2:
x - 1 = 0
x = 1
Vậy x = 0 hoặc x = 1
a)
\(3x\left(x-10\right)=x-10\)
\(\Rightarrow3x\left(x-10\right)-\left(x-10\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x-10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-1=0\\x-10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=10\end{array}\right.\)
b)
\(x\left(x+7\right)-\left(4x+28\right)=0\)
\(\Rightarrow x\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=-7\end{array}\right.\)
c)
\(x\left(x-4\right)=2x-8\)
\(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=2\end{array}\right.\)
d)
\(\left(2x+3\right)\left(x-1\right)+\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow2\left(2x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+3=0\\x-1=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=1\end{array}\right.\)
Tìm x, biết:
a)x(2x-3)-(2x-1)(x+5)=17
b)(2x+5)^2+(3x-10)^2+2.(2x+5)(3x-10)=0
a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)
\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)
\(\Leftrightarrow-12x=12\)
hay x=-1
Tìm số tự nhiên x biết:
a) (10-2x).(3x-18)=0 b) 10 + 2x = 165: 216 c) 28 - 2.(x - 4)2=10 d) (15-x)3.(x2 + 16) = 0 e) 52x - 3 - 2.52 = 52 . 3
f) (8 - x3).(x2 + 16) = 0 j) (2x + 5) + (2x + 10) +(2x + 15) +...+(2x + 95) = 77520
| 2x - 10 | + 10 - 2x = 0
tìm x thuộc Z
|2x - 10| + 10 - 2x= 0
<=> | 2x - 10 | = 2x - 10
<=> 2x -10 ≥ 0
<=> 2x ≥ 10
<=> x ≥ 5
mà x thuộc Z
=> x thuộc Ơ 5;6;7;8;9;...Ư
a) 7x .(2x+10)=0
b)-9x:(2x-10)=0
c) (4-x) (x+3)=0
d) (x+2023) . (x - 2024)=0
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}
Tìm x biết :
a) ( 2x - 3 ).( x +1 ) > 0
b) ( x + 5 ).(x-7) < 0
c) | 2x - 3 | + 8 = 10
d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
3. Tìm x, biết:
a) 2x + 8 ≤ 0
b) 4x-7 ≥ 2x -5
c) (2x-8)(15-3x)>0
d) (10-2x)(8+2x)≤0