Tìm GTLN
-(4/9x-2/15)6+3
tìm GTLN hoặc nhỏ nhất của:
B = (2x + 1/3)^4 - 1
D = -(4/9x - 2/15)^6 + 3
B có GTNN là -1
<=> 2x+1/3=0
<=> 2x=-1/3
<=> x=-1/6
D có GTLN là 3
<=> 4/9x-2/15=0
<=> 4/9x=2/15
<=> x=3/10
a) Tìm GTNN của biểu thức A=(2x+1/3)^4-1
b)Tìm GTLN của biểu thức B=(4/9x -2/15)^6+3
Hộ mik nhanh nhé
a) tim GTNN: A=(2x+1/3)4-1
b) tin GTLN : B=(4/9x-2/15)6+3
C=13/(3x+2)2+11
Tìm GTLN của biểu thức A=(-3x3+5x2-9x-15):(3x+5)
Sửa chút đề nhé!
Với x khác -5/3
A= (3x^3+5x^2-9x-15):(3x+5)
= [x^2(3x+5)-3(3x+5)]:(3x+5)
=(x^2-3) (3x+5):(3x+5)
=x^2-3\(\ge-3\)
Dấu '=' xảy ra khi x=0
max A=-3 khi x=0
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
Bài 1:Tìm x,y biết:
(1/2x-5)20+(y2-1/4)10<0
Bài 2:Tìm x thuộc Z biết:
(x-7)x+1-(x-7)x+11=0
Bài 3:A,Tìm GTNN của biểu thức A=(2x+1/3)4-1
B,Tìm GTLN của biểu thức B=-(4/9x-2/15)6+3
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Tìm GTLN của biểu thức :
\(A=x^4-6x^3+9x^2+6x+2021\)
Tìm gtln -x^2+5x và-3x^2-9x+6
\(-3x^2-9x+6\)
\(=-3\left(x^2+3x-2\right)\)
\(=-3\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{17}{4}\right)\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
tìm GTNN của biểu thức: A=(2x+1/2)^4-1,
tìm GTLN:B-(4/9x-2/15)^6+3
a, Vì (2x+1/2)4>= 0
=> (2x+1/2)4-1>= -1
=> Min A =-1 <=> x = -1/4
b, vì -(4/9x-2/15)6<= 0
=> 3-(4/9x-2/15)6<= 3
=> Max B = 3 <=> x=3/10