Tìm cặp số nguyên x,y thỏa mãn:
lx + 4l + ly - 2l = 3
tìm x,y thỏa mãn: lx - 1l + lx - 2l + ly - 3l + lx - 4l = 3
Lập bảng xét dấu là ra thôi bài này dễ mà
ns nghe thì dễ nhưng trình bày sao
Tìm x, y thỏa mãn: lx-1l+lx-2l+ly-3l+lx-4l=3
giúp mình dzới 😥😥😃😃
lx+3l+lx-1l=16/(ly-2l+ly+2l)
Tìm các cặp số nguyên (x,y) thỏa mãn
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:
\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)
\(\ge\left|x+3+1-x\right|=4\left(1\right)\)
Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)
\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)
\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)
Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)
Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Tìm các cặp số nguyên x,y thỏa mãn
lx+2l+lx-1l=3-(y+2)^2
Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)
Dấu "=" xảy ra khi:\(\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)
Tìm x,y,z thuộc Z biết lx + 5l + ly - 4l + lx - 2l = 0 ( l là giá trị tuyệt đối )
Đề phải là \(\left|x+5\right|+\left|y-4\right|+\left|z-2\right|=0\)
Vì trị tuyệt dối luôn lớn hơn hoặc bằng 0 mà tổng các trị tuyệt đối = 0 nên
\(x+5=0\Leftrightarrow x=-5\)
\(y-4=0\Leftrightarrow y=4\)
\(z-2=0\Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(-5;4;2\right)\)
tìm các cặp số nguyên x, y thỏa mãn:
a, l xl + 2lyl = 0
b, 3l xl + 2l yl =0
Tập hợp các giá trị nguyên của x thỏa mãn l3x-4l = lx+2l là {...}
|3x-4|=|x+2|
\(\Leftrightarrow\int^{3x-4=x+2}_{3x-4=-x-2}\Leftrightarrow\int^{3x-x=4+2}_{3x+x=4-2}\Leftrightarrow\int^{2x=6=>x=3}_{4x=2=>x=2}\)
vậy x E {2'3}
kết quả là 3
mình thi rồi, 300/300 đó
kết quả là 3
mình thi rồi, 300 đó
Tập hợp các giá trị nguyên của x thỏa mãn l3x-4l = lx+2l
Tìm các số nguyên x,y thỏa mãn
lx+2l+lx-1l=3-2(y+2)2