Tìm UCLN của \(\frac{n.\left(n+1\right)}{\left(2\right)}\) và 2n + 2 ( \(n\in\)N* )
tìm UCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 ( n thuộc N )
gọi UCLN là d
tớ chỉ làm cách biến đổi thôi:
n(n+1)/2=8.n(n+1)/2=4.[n(n+1)]=4(n2+n)=4n2+4n
và 2n+1=2.(2n+1)=4n+2=n(4n+2)=4n2+2n
bạn tự làm tiếp nhé đoạn cuối là 2d chia hết cho d
mà 2d+1 chia hết cho d nên 1 chia hết cho d
Tìm UCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n - 1
Bài 1 : Tìm \(n\in N\)
a) \(\frac{4n-1}{3n+2}\in N\) b) \(\frac{5n-7}{2n+1}\in N\)
Bài 2 : Tìm \(n\in N\)
a) \(\left(n+2\right)\cdot\left(2n+5\right)=21\) b) \(\left(2n-3\right)\cdot\left(n-5\right)=22\)
Bài 3 : Tìm \(x.y\in N\)
a) \(\left(2n+1\right)\cdot\left(3y-5\right)=12\) b) \(\left(3x-1\right)\cdot\left(4y+3\right)=14\)
Cách bạn giải ra giúp mình nha !
CMR: \(\forall n\in N\)thì \(\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-...-\left(-1\right)^n\left\{\frac{n}{n}\right\}\right|< \sqrt{2n}\)
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
CMR \(\forall n\in\)N* ta có
\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+...+\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Chứng minh rằng với \(n\in N\)* thì:
a, \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
b, \(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
c, \(n+2\left(n-1\right)+3\left(n-2\right)+...+n=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Cứu mình với!
a/ Cho \(\frac{a}{b}=\frac{60}{108}\)sao cho [a;b] = 180. Tìm phân số đó.
b/ Chứng minh \(\frac{1.3.5.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....\left(2n\right)}=\frac{1}{2^n}\)(n \(\in\)N*)
Các bạn giải từng câu một cũng dc nhé
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)và 2n + 1 ( n \(\in\)N* )
gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*
=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d
=>n(2n+1)-n(n+1) chia hết cho d
=>2n^2+n-n^2+n chia hết cho d =>n^2+(n^2+n-n^2+n) chia hết cho d
=>n^2 chia hết cho d
TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d =>n chia hết cho d
Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=> 2n chia hết cho d =>1 chia hết cho d =>d=1