Những câu hỏi liên quan
PT
Xem chi tiết
TT
Xem chi tiết
DK
Xem chi tiết
AH
18 tháng 12 2023 lúc 20:31

Lời giải:
Để pt có 2 nghiệm thì: $\Delta'=1-k\geq 0\Leftrightarrow k\leq 1$
Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-2$

$x_1x_2=k$

$x_1,x_2\neq 0\Leftrightarrow x_1x_2\neq 0\Leftrightarrow k\neq 0$

Khi đó:

$\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{4}$

$\Leftrightarrow \frac{-2}{k}=\frac{1}{4}\Leftrightarrow k=-8$ (tm)

Bình luận (0)
TA
Xem chi tiết
GV
9 tháng 3 2018 lúc 14:52

Điều kiện để phương trình bậc hai có hai nghiệm trái dấu là \(\frac{c}{a}< 0\) (vì khi này thì \(a.c< 0\) và \(\Delta=b^2-4ac>0\))

=> \(k^2-16>0\)

    \(k< -4\) hoặc \(k>4\)

Bình luận (0)
SD
Xem chi tiết
H24
Xem chi tiết
MY
30 tháng 7 2021 lúc 10:39

\(a,< =>\Delta=0\)

\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)

\(< =>k^2+2k+1-8-4k=0\)

\(< =>k^2-2k-7=0\)

\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)

b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)

\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)

\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)

Bình luận (0)
NT
30 tháng 7 2021 lúc 13:42

a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)

\(=k^2+2k+1-4k-8\)

\(=k^2-2k-7\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow k^2-2k-7=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)

Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 8 2021 lúc 22:43

\(\text{Δ}=\left(2k\right)^2-4\cdot\left(k^2-k\right)\)

\(=4k^2-4k^2+4k\)

=4k

Để phương trình có nghiệm thì \(4k\ge0\)

hay \(k\ge0\)

Bình luận (0)
LH
Xem chi tiết
AL
Xem chi tiết
NH
22 tháng 1 2022 lúc 18:36

a/ Xét phương trình :  \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)

Ta có :

\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)

\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k

b/ Theo định lí Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)

\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)

\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)

\(\Leftrightarrow k=\pm3\)

Vậy....

 

 

Bình luận (0)