Những câu hỏi liên quan
TH
Xem chi tiết
LM
8 tháng 10 2019 lúc 21:26

a,(2n+4).2=4(n+2) chia hwtc ho 8

Bình luận (0)
NA
8 tháng 10 2019 lúc 21:28

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Bình luận (0)
H24
8 tháng 10 2019 lúc 21:28

a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)

\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8n+8\)

\(=8\left(n+1\right)\)

có \(8\left(n+1\right)⋮8\)

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=24n\)

có \(24n⋮24\)

\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)

Bình luận (0)
KC
Xem chi tiết
KC
17 tháng 8 2019 lúc 22:14

\(\left(n^2+n-1\right)-1⋮24\forall n\in Z\) help me

Bình luận (0)
PN
18 tháng 8 2019 lúc 20:45

Sửa đề: \(\left(n^2+n-1\right)^2-1\)

\(\Leftrightarrow\left(n^2+n\right)\left(n^2+n-2\right)\)

\(\Leftrightarrow n\left(n+1\right)n^2+2n-n-2\)

\(\Leftrightarrow n\left(n+1\right)n\left(n+2\right)-\left(n+2\right)\)

\(\Leftrightarrow\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)( Tích 4 số tự nhiên liên tiếp)

Chúc bạn học tốt!!

Bình luận (0)
IA
Xem chi tiết
PH
17 tháng 8 2019 lúc 22:47

cậu có saii đề không ạ ? Mình nghĩ là bình phương chứ?

Bình luận (0)
IA
17 tháng 8 2019 lúc 23:15

thêm bình phương nữa bạn

Bình luận (0)
NT
Xem chi tiết
PC
14 tháng 5 2018 lúc 21:11

Ta có: \(\left(n^2+3n+1\right)^2-1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

*Do n là số tự nhiên nên tích trên là tích 4 số tự nhiên liên tiếp

Trong 4 số tự nhiên liên tiếp có 2 số chẵn liên tiếp, trong đó 1 số chia hết cho 4, số còn lại chia hết cho 2

=> Tích đó chia hết cho 8(1)

Trong 4 số tự nhiên liên tiếp chia hết cho 3

=> Tích đó chia hết cho 3(2)

Từ (1) và (2)

=> Tích 4 số tự nhiên liên tiếp chia hết cho 24

=> ĐPCM*

Bình luận (0)
MS
14 tháng 5 2018 lúc 21:06

       \(\left(n^2+3n+1\right)^2-1\)

\(=n^4+9n^2+1+6n^3+6n+2n^2-1\)

\(=n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left(n+1\right)\left(n^2+5n+6\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho  2, 3, 4

mà  \(\left(2,3,4\right)=1\)

nên   \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) chia hết cho 24

hay  \(\left(n^2+3n+1\right)^2-1\) chia hết cho 24   

Bình luận (0)
DL
14 tháng 5 2018 lúc 21:11

\(\left(n^2+3n+1\right)^2-1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+3\right)\left(n^2+n+2n+2\right)\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

Vì n là số tự nhiên nên  n(n+3)(n+1)(n+2) la tích 4 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+3\right)\left(n+1\right)\left(n+2\right)⋮1.2.3.4=24\)

Bình luận (0)
LD
Xem chi tiết
TC
5 tháng 1 2024 lúc 23:21

Ta có:

\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)

\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)

Đặt \(u_{n+1}-2u_n=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Ta có:

\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)

\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)

\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)

\(...\)

\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)

\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Cộng theo vế, ta có:

\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)

\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)

\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)

\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)

Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)

\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)

Bình luận (0)
MB
Xem chi tiết
MB
Xem chi tiết
VN
Xem chi tiết
NN
Xem chi tiết
H24
1 tháng 9 2017 lúc 22:02

sử dụng phương pháp quy nạp

*với n=1 thì 2 chia hết cho2 

*với n=2 thì 3*4=12 chia hết cho 4

thử đúng đến n=k cần cm n=k+ 

ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k

n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)

=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1

Bình luận (0)
H24
1 tháng 9 2017 lúc 22:03

thiếu số 1 ở chỗ cm đúng với n=k+1

Bình luận (0)