Phân tích đa thức thành nhân tử:
ab(a+b)+bc(b+c)+ac(a+c)-(a^3+b^3+c^3)-2abc
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
phân tích đa thức thành nhân tử:ab(a+b)+bc(b+c)+ac(a+c)
Phân tích đa thức thành nhân tử:
ab(a-b)+bc(b-c)+ca(c-a)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ =a^2b-ab^2+b^2c-bc^2+ac^2-a^2c\\ =\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)-ca\left(a-c\right)\\ =b\left(a-c\right)\left(c+a\right)+b^2\left(a-c\right)-ca\left(a-c\right)\\ =\left(a-c\right)\left(bc+ab+b^2-ca\right)\\ =\left(a-c\right)\left[a\left(b-c\right)-b\left(b-c\right)\right]\\ =\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Tick plz
\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(ac+bc\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Phân tích đa thức thành nhân tử:
1, a.(b^2+c^2+b.c)+b.(c^2+a^2+a.c)+c.(a^2+b^2+a.b)
2, ab.(a+b)-bc.(b+c)+ac.(a-c)
3, a.(b^2+c^2)+b.(c^2+a^2)+c(a^2+b^2)+2abc
phân tích đa thức thành nhân tử
a) x3 +y3 + z3 -3xyz
b) a(b2 +c2 ) +b(c2 +a2) +c(a2+b2) +2abc
c) ab(a+b) - bc(b+c)+ac(a-c)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\)
Phân tích đa thức thành nhân tử
ab*(a+b)-bc*(b+c)+ca*(c+a)+2abc
ab(a+b)+bc(b+c)+ca(a+c)+2abc
Phân tích đa thức thành nhân tử
ab(a+b) + bc(b+c) + ca(c+a) = a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc
= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)
=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)
=b^2(a+c) + b(a+c)^2 + ca(c+a)
=(c+a)[b^2 + b(a+c) + ca]
=(c+a)[b^2 + ab + bc + ca]
=(c+a)[b(b+a) + c(b+a)]
=(c+a)(b+c)(b+a)
phân tích đa thức thành nhân tử
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(c+a\right)+2abc\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+a^2c+ac^2+2abc\)
\(=ab\left(a+b\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+c^2+ac+bc\right)\)
\(=\left(a+b\right)\left[\left(ab+ac\right)+\left(c^2+bc\right)\right]\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp nhẩm nghiệm và hoán vị vòng:
a) ( a-b)^3 + ( b-c ) + ( c+a )^3
b) ( x+y+z )^3 - x^3 - y^3 - z^3
c) ab( a-b) + bc( b-c ) + ca( c-a )
d) bc( b+c ) + ca( c+a ) + ba ( a+b ) + 2abc
Giúp mình với a!!!!
Phân tích đa thức sau thành nhân tử:
\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)+2abc\)
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b+c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(ab\left(a+b\right)+bc\left(a+b\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(\left(a+b\right)\left(ab+bc\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a+b\right)\left(c+a\right)+bc\left(c-a\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ac+a^2+bc+ab\right)+b\left(c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(ca+a^2+bc+ab+c^2-ca\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+ab+bc+c^2\right)+ca\left(c+a\right)+2abc\)
\(=\)\(b\left(a^2+2ca+c^2+ab+bc\right)+ca\left(c+a\right)\)
\(=\)\(b\left[\left(c+a\right)^2+b\left(c+a\right)\right]+ca\left(c+a\right)\)
\(=\)\(b\left(c+a\right)\left(a+b+c\right)+ca\left(c+a\right)\)
\(=\)\(\left(c+a\right)\left(ab+b^2+bc+ca\right)\)
\(=\)\(\left(c+a\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
\(=\)\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
...
cách này ngắn hơn nè:
\(ab.\left(a+b\right)+bc.\left(b+c\right)+ac.\left(a+c\right)+2abc\)
\(=a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+abc+abc\)
\(=\left(abc+ac^2\right)+\left(abc+b^2c\right)+\left(a^2b+ab^2\right)+\left(c^2a+c^2b\right)\)
\(=ac.\left(a+b\right)+bc.\left(a+b\right)+ab.\left(a+b\right)+c^2.\left(a+b\right)\)
\(=\left(a+b\right).\left(ac+bc+ab+c^2\right)\)
\(=\left(a+b\right).\left[c\left(a+c\right)+b.\left(a+c\right)\right]=\left(a+b\right).\left(c+b\right).\left(a+c\right)\)