Những câu hỏi liên quan
TL
Xem chi tiết
NT
6 tháng 3 2023 lúc 22:43

Bài 2:

C=A-B

\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)

\(=7x^2-10xy-3y^2\)

\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)

Bình luận (0)
BN
Xem chi tiết
NT
27 tháng 10 2021 lúc 14:36

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)

Bình luận (0)
BN
Xem chi tiết
AH
27 tháng 10 2021 lúc 12:01

Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.

b. Ta có:

$(7y-x)^{2020}\geq 0$ với mọi $x,y$

$|5-11x|^{2021}\geq 0$ với mọi $x,y$

Do đó để tổng của chúng bằng $0$ thì:

$(7y-x)^{2020}=|5-11x|^{2021}=0$

$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$

Bình luận (1)
BN
27 tháng 10 2021 lúc 12:07

Bình luận (0)
SP
Xem chi tiết
ST
Xem chi tiết
NT
29 tháng 8 2023 lúc 20:43

a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)

b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)

c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)

Bình luận (0)
H24
29 tháng 8 2023 lúc 20:44

\(a,-6x^3y^2:2xy^2=-3x^2\)

\(b,-\dfrac{1}{4}x^4y^3:\dfrac{1}{2}x^3y^2=-\dfrac{1}{2}xy\)

\(c,8x^4y^5:4x^3y^4=2xy\)

#Urushi

Bình luận (0)
VR
Xem chi tiết
NK
Xem chi tiết
NT
20 tháng 6 2023 lúc 9:40

Sửa đề: B=-2x^2+xy+2y^2-3-5x+2y

a: A+B+C

=x^2-3xy-y^2+2x-3y+1-2x^2+xy+2y^2-3-5x+2y+C

=-x^2-2xy+y^2-3x-y-2+3x^2+7y^2-4xy-6x+4y+5

=2x^2+8y^2-6xy-9x+3y+3

b: 7A-B-C-9

=7A-9-(x^2+9y^2-3xy-11x+6y+2)

=7x^2-7y^2-21xy+14x-21y+7-x^2-9y^2+3xy-11x-6y-2-9

=6x^2-16y^2-18xy+3x-27y-4

Bình luận (0)
TO
Xem chi tiết
ST
8 tháng 7 2018 lúc 15:26

Nguyễn Ngọc Sáng theo mình là đề sai nên sửa thành x2

Bình luận (0)
ST
8 tháng 7 2018 lúc 15:22

a,sửa x8 thành x2

\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)

Dấu "=" xảy ra khi x+2=0 <=> x=-2

Vậy Amax = 21 khi x = -2

b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy Bmax = 7 khi x=-1,y=-1/2

Bình luận (0)
PA
8 tháng 7 2018 lúc 15:23

Sửa x^8=x^2 là sao bạn :v @@ hổng hiểu 

Bình luận (0)
H24
Xem chi tiết