Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HA
Xem chi tiết
HD
24 tháng 1 2021 lúc 8:13

a ) 1/2, 2/3, 3/6, 1/3, 1/6, 2/6      b)2/1, 3/2, 6/1, 6/2, 6/3, 3/1     c) ko có số nào bằng nhau

Bình luận (0)
 Khách vãng lai đã xóa
HA
26 tháng 1 2021 lúc 20:13

Có phân số bằng nhau đó bạn.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
AH
29 tháng 1 2023 lúc 17:35

Lời giải:

$\frac{3}{6}=\frac{2}{4}$

$\frac{6}{3}=\frac{4}{2}$

$\frac{3}{2}=\frac{6}{4}$

$\frac{2}{3}=\frac{4}{6}$

Bình luận (0)
BS
29 tháng 1 2023 lúc 17:35

Các cặp phân số bằng nhau từ đẳng thức \(3\times4=6\times2\) là:

\(\dfrac{3}{6}=\dfrac{2}{4};\)   \(\dfrac{4}{6}=\dfrac{2}{3};\)   \(\dfrac{6}{3}=\dfrac{2}{4};\)   \(\dfrac{6}{4}=\dfrac{3}{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 3 2018 lúc 4:31

Trước khi xem đáp số, các bạn để ý rằng: khi ta nhân chéo mỗi cặp phân số bằng nhau trên thì ta đều được đẳng thức 2.3 = 1.6 ban đầu. Chẳng hạn:

2/6 = 1/3 nhân chéo ta được: 2.3 = 1.6;

2/1 = 6/3 nhân chéo ta được: 2.3 = 1.6; ..

Qua đẳng thức 3.4 = 6.2 lần lượt lấy một thừa số ở vế trái làm tử số còn mẫu số là một thừa số bất kì ở vế phải, chúng ta lập được các cặp phân số bằng nhau sau:

Giải bài 10 trang 9 SGK Toán 6 Tập 2 | Giải toán lớp 6

 

Bình luận (0)
PA
Xem chi tiết
H24
Xem chi tiết
B1
26 tháng 8 2017 lúc 20:10

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
H24
26 tháng 8 2017 lúc 20:11

a) 1/2 ; 1/3; 1/4 ; 2/3 ;2/4 ; 3/4

b) 2/1; 3/1; 4/1 ;3/2 ; 4/2 ;4/3

c) 1/1 ;2/2 ; 3/3 ; 4/4

Bình luận (0)
KS
26 tháng 8 2017 lúc 20:11

a)1/2 ; 1/3 ; 1/4 ; 2/3 ; 3/4 

b)2/1 ; 3/1 ; 3/2 ; 4/3 ; 4/2 ; 4/1 

c)1/1 ; 2/2 ; 3/3 ; 4/4

Bình luận (0)
KD
Xem chi tiết
LP
27 tháng 6 2017 lúc 9:10

\(=32\) 

Chẳng biết đúng hay sai

Bình luận (0)
PY
29 tháng 6 2017 lúc 9:31

là 32 nha bạn

Bình luận (0)
OM
29 tháng 6 2017 lúc 9:35

đáp số 32

Bình luận (0)
DM
Xem chi tiết
TL
Xem chi tiết
NT
26 tháng 1 2024 lúc 19:02

Có 4 phân số lập được là: \(\dfrac{-13}{5};\dfrac{5}{-13};\dfrac{0}{-13};\dfrac{0}{5}\)

Bình luận (0)