chứng minh rằng n5 - n + 2 không phải số chính phương với n nguyên dương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có:
n2 < n2 +n+1 < n2 + 2n+1 hay n2 < n2 +n+1 < (n+1)2
Mà n và (n+1) là hai số chính phương liên tiếp và n2+n+1 là số kẹp giữa hai số đó nên không thể là số chính phương
Chứng minh rằng nếu số nguyên dương n không phải là một số chính phương thì căn n là một số vô tỉ.?
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Tham khảo nè bác :)
Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 7 - Học toán với OnlineMath
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 => p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ
(đ.p.c.m)
=>căn n =a/b(b khác 0)(số hữu tỉ có thể biểu diễn như vậy)
<=> n=a^2/b^2
<=>a^2=b*c^2
mà a^2 và b^2 là hai số chính phương
=> n là số chính phương
=> trái giả thiết => giả sứ sai
=>a ko phải là số chính phương => căn a là số vô tỉ
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
1/ Chứng minh rằng: Nếu số nguyên dương n không phải là số chính phương thì √n là số vô tỉ.
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Cho n là số nguyên dương và m là ước nguyên dương của 2 Chứng minh rằng :n - m không là số chính phương.
Cho n là số nguyên dương và m là ước nguyên dương của 2 Chứng minh rằng :n - m không là số chính phương.
n^2 -m nha. ko phải n-m đâu. so sorry