A=1/2.3+1/3.4+...+1/99.100
A=1/2.3+1/3.4+...+1/99.100
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
ta có: \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
...
\(\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
vậy A = 49/100
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
`A=1/(2.3) + 1/(3.4) +........ +1/(99.100)`
`=1/2-1/3+1/3-1/4+......+1/99-1/100`
`=1/2-1/100`
`=49/100`
A= 1/1.2+1/2.3+1/3.4+...+1/99.100 = ?
A=1/1-1/2+1/2-1/3+1/3-1/4+...............+1/99-1/100
A=1/1-1/100
A=100/100-1/100
A=99/100
Mk ko chép đề bài
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A==\frac{99}{100}\)
kết quả = 99/100 tick mik đúng nhé
A=1/2.3+1/3.4+1/4.5+...+1/99.100
Ta có: 1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
= 1/2-1/100
= 50/100-1/100
= 49/100
A = 1/2 - 1/3 + 1/3 -1/4 + 1/4 -1/5 + ...+ 1/98 - 1/99 + 1/99 - 1/100
Ta thấy đoạn giữa sẽ bị trừ lẫn nhau nên bằng 0
A = 1/2 - 1/100 = 49/100
tích nha
Tính A = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(-2-4-6-...-100\right)+\)\(\left(-1.2-2.3-3.4-...-99.100\right)\)
tinh
A=1/1.2+1/2.3+1/3.4+.........1/99.100
A=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100
A=1-1/100
A=99/100
ai k mk mk k lai
A = 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100
A = 1 - 1/100
A = 99/100
Ai k mk mk k lại !
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
=1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
=1-1/100
=99/100
=1−1/2+1/2−1/3+1/3−1/4+...+1/99−1/100
=1 − 1/100 = 99/100
1/1.2+1/2.3+1/3.4+...+1/99.100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100