Tìm m và n là số nguyên dương sao cho :2m-2n=512
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương
TH1 3m-1/2n là dương suy ra 3m-1 chia hết cho 2n
Để 3m-1 chia hết cho 2n suy ra 3m-1 là chẵn
suy ra 3m là lẻ
suy ra m là lẻ và n có thể là bất kì số nào(n,m thuộc N)
TH2
3n-1/2m là dương suy ra 3n-1 chia hết cho 2m
Để 3n-1 chia hết cho 2m suy ra 3n-1 là chẵn
suy ra 3n là lẻ
suy ra n là lẻ và m có thể là bất kì số nào(n,m thuộc N)
vậy n,m là lẻ
tìm m,n nguyên dương để 3m-1/2n và 3n-1/2m cùng là số nguyên dương
Tìm các số nguyên tố p,q và m,n nguyên dương sao cho p2m +q2n là số chính phương.
Giúp mình với! Mình cần gấp ạ!
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Đặt \(p^{2m}+q^{2n}=a^2\)\(\left(a\in Z\right)\)(1)
Nếu p,q lẻ suy ra \(p^{2m}\equiv q^{2n}\equiv1\)(mod 4)
\(\Rightarrow a^2\equiv2\)(mod 4), vô lý.
Suy ra trong p,q có 1 số = 2
Không mất tính tổng quát, giả sử p=2
\(\left(1\right)\Leftrightarrow2^{2m}+q^{2n}=a^2\)(2)
Nếu q khác 3 \(\Rightarrow\)q không chia hết cho 3\(\Rightarrow\)\(q^2\equiv1\)(mod 3)\(\Rightarrow\)\(q^{2n}\equiv1\)(mod 3)
Mà \(2^{2m}=4^m\equiv1^m\equiv1\)(mod 3)
Suy ra \(2^{2m}+q^{2n}\equiv2\)(mod 3)\(\Rightarrow\)vô lý.
Do đó q=3.
(2) trở thành \(2^{2m}+3^{2n}=a^2\)\(\Leftrightarrow\)\(3^{2n}=\left(a-2^m\right)\left(a+2^m\right)\)
\(\Rightarrow\)\(a-2^m\)và \(a+2^m\)là lũy thừa của 3.
Mà 2 số trên không cùng chia hết cho 3 (vì hiệu của chúng không chia hết cho 3)
\(\Rightarrow\)Có 1 số không chia hết cho 3\(\Rightarrow\)Có 1 số bằng 1 mà \(a-2^m< a+2^m\)\(\Rightarrow\hept{\begin{cases}a-2^m=1\\a+2^m=3^{2n}\end{cases}}\Rightarrow2\cdot2^m=3^{2n}-1\Rightarrow2^{m+1}=\left(3^n-1\right)\left(3^n+1\right)\)
\(\Rightarrow\)\(3^n-1\)và \(3^n+1\)đều là lũy thừa của 2.
Mà 2 số này không cùng chia hết cho 4 (do hiệu của chúng = 2 không chia hết cho 4).
\(\Rightarrow\)Có 1 số không chia hết cho 4.
Mà 2 số cùng tính chẵn lẻ\(\Rightarrow\)2 số cùng chẵn\(\Rightarrow\)Có 1 số = 2.
\(\Rightarrow\hept{\begin{cases}3^n-1=2\\3^n+1=2m\end{cases}}\)(do \(3^n-1< 3^n+1\))\(\Rightarrow\hept{\begin{cases}n=1\\m=2\end{cases}\Rightarrow\hept{\begin{cases}p=2\\q=3\end{cases}.}}\)
P/S: Bài dài viết lại mỏi quá.
Tìm các số nguyên dương m và n, sao cho 2m-2n=512
vì m và n đều là số nguyên dương mà \(2^m-2^n=512\Rightarrow m>n\)
Đặt m=n+k( k>0,k thuộc Z+)
\(2^{n+k}-2^n=2^9\Rightarrow2^n.\left(2^k-1\right)=2^9\)
vì 2k-1 là số lẻ mà Ước của 29 chỉ có 1 là số lẻ => 2k-1=1=> 2k=2=> k=1
=> 2n=29 => n=9. m=1+9=10
Vậy n=9,m=10
\(2^m-2^n=512\)
\(\implies 2^m-2^n=2^9>0\)
\(\implies 2^m-2^n>0\)
\(\implies m>n\)
\(\implies 2^n(2^{m-n}-1)=2^9.1\)
Thấy \(2^{m-n}-1 \neq0\implies 2^{m-n}\neq1\implies m-n\neq0\)
\(\implies 2^{m-n}\vdots2\)
\(\implies 2^{m-n}-1\) chia 2 dư 1
\(\implies\)\(\hept{\begin{cases}2^n=2^9\\2^{m-n}-1=1\end{cases}\Rightarrow\hept{\begin{cases}n=9\\m-n=1\end{cases}\Rightarrow}\hept{\begin{cases}n=9\\m=10\end{cases}}}\)
Vậy n=9;m=10(tmđk)
_Học tốt_
Tìm các số nguyên dương m và n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùng là các số nguyên dương
Nhanh giúp mk nha
AI trả lời tôi tick cho
6 phát thôi nhé
Tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cũng là các số nguyên dương
Nhanh mk tick cho
>3 cái cũng ô văn kê
Nhanh nhé
tìm các số nguyên dương m,n sao cho \(\frac{3m-1}{2n}\)và \(\frac{3n-1}{2m}\)cùn là các số nguyên dương
Tìm 2 số nguyên dương m và n, sao cho 2\(^m\)- 2\(^n\)=512
Mk đang cần nha
Ta có: \(2^m-2^n=2^8\)
\(2^n\left(2^{m-n}-1\right)=2^8\)
\(2^{m-n}-1=1\)
\(2^1-1=1\)
\(m-n=1\)
\(2^8\left(2^{9-8}-1\right)=2^8\)
\(\Rightarrow\)\(m=9\)
\(n=8\)
Cho m,n là các số nguyên dương:
A= (2+4+6+...+2m)/m ; B = (2+4+6+...+2n)/n
Biết A<B, hãy so sánh m và n
Dấu / là bạn viết theo dấu chia dạng phân số nhưng ko pít viết trên MT đó mà mk cx z :)
Cho m và n là các số nguyên dương:
A=2+4+6+.....+2m/m ; B=2+4+6+.....+2n/n
Biết A<B, hãy so sánh m và n