Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Tìm m và n là số nguyên dương sao cho :2m-2n=512

\(2^m-2^n=512\)

\(\Rightarrow2^m-2^n=2^9\)

\(\Rightarrow m=10;n=9\)

Bình luận (0)
KN
12 tháng 9 2019 lúc 7:16

\(2^m-2^n=512\Leftrightarrow2^m-2^n=2^9\Leftrightarrow2^m>2^n\Leftrightarrow m>n\)

\(TH1:m-n=1\)

\(\Rightarrow2^m-2^n=2^n\left(2^{m-n}+1\right)=2^9\Leftrightarrow2^n.\left(2-1\right)=2^9\)

\(\Leftrightarrow2^n=2^9\Leftrightarrow n=9\)\(\Rightarrow m=10\)

\(TH2:m-n>2\),\(2^n\left(2^{m-n}+1\right)=2^9\)

Vế trái có thừa số \(2^{m-n}+1\)lẻ (Vì m - n >2 nên \(2^{m-n}\)chẵn\(\Leftrightarrow2^{m-n}+1\)lẻ)

Vậy m = 10; n = 9

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
DM
Xem chi tiết
TD
Xem chi tiết
NB
Xem chi tiết
QH
Xem chi tiết
TK
Xem chi tiết
BH
Xem chi tiết
QH
Xem chi tiết
NH
Xem chi tiết