Những câu hỏi liên quan
H24
Xem chi tiết
KT
6 tháng 4 2018 lúc 19:29

id nhu 1 tro dua

Bình luận (0)
TH
Xem chi tiết
Xem chi tiết
LL
Xem chi tiết
TN
3 tháng 12 2017 lúc 21:04

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

Bình luận (0)
DA
Xem chi tiết

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

Bình luận (0)
XO
8 tháng 7 2019 lúc 14:58

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)

Bình luận (0)
PL
Xem chi tiết
TD
13 tháng 7 2017 lúc 14:46

A=24783,14746B=49566,29188

Vậy A<B

Bình luận (0)
HH
14 tháng 7 2017 lúc 14:17

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

Bình luận (0)
MT
Xem chi tiết
NT
16 tháng 8 2021 lúc 12:56

a: Ta có: \(A=2018^2-2017^2=2018+2017\)

\(B=2017^2-2016^2=2017+2016\)

mà 2018>2016

nên A>B

Bình luận (1)
NL
Xem chi tiết
H24
22 tháng 8 2018 lúc 10:24

1: so sánh 2016/2017+2017/2018 

vì 2016/2017 > 1/2017 >1/2018 =

> 2016/2017+2017/2018 >1/2018+2017/2018=1

vậy .....

Bình luận (0)
NL
22 tháng 8 2018 lúc 15:42

bạn làm đúng rồi nhưng mình cần 2 bài

Bình luận (0)
LV
14 tháng 4 2019 lúc 16:54

2.a)2/2017+2/2018 trên 5/2017+5/2018

=2*(1/2017+1/2018) trên 5*(1/2017+1/2018)

=2/5

Câu b của bn mình ko hiểu cho lắm. Chữ "và" ở đây nghĩa là gì vậy?

Bình luận (0)
LH
Xem chi tiết