Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
YK
Xem chi tiết
AH
29 tháng 6 2024 lúc 23:50

1/ Đề là $11y$ hay $11^y$ vậy bạn? Bạn xem lại đề.

Bình luận (0)
AH
29 tháng 6 2024 lúc 23:52

2/

$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$

$\Rightarrow n\vdots BCNN(65,125)$

$\Rightarrow n\vdots 1625$

$\Rightarrow n=1625k$ với $k$ tự nhiên.

$n=1625k=5^3.13.k$

Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại) 

Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.

$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.

Vậy $n=1625p$ với $p$ là số nguyên tố. 

Bình luận (0)
AH
29 tháng 6 2024 lúc 23:55

3/

$2xy+x=5y$

$\Rightarrow x(2y+1)=5y$

$\Rightarrow x=\frac{5y}{2y+1}$ ($2y+1\neq 0$ với mọi $y$ tự nhiên)

Để $x$ tự nhiên thì $5y\vdots 2y+1$

$\Rightarrow 10y\vdots 2y+1$

$\Rightarrow 5(2y+1)-5\vdots 2y+1$

$\Rightarrow 5\vdots 2y+1$

$\Rightarrow 2y+1\in \left\{1; 5\right\}$ (do $y$ là số tự nhiên)

$\Rightarrow y\in \left\{0; 2\right\}$

Nếu $y=0$ thì $x=\frac{5y}{2y+1}=0$

Nếu $y=2$ thì $x=\frac{5y}{2y+1}=\frac{10}{5}=2$

Bình luận (0)
KT
Xem chi tiết
H24
11 tháng 4 2018 lúc 21:17

Ta có: \(272x-29=11^y\)

\(\Rightarrow11^y+29=272x\)

vì 11y luôn có chữ số tận cùng là 1 và 29 có chữ số tận cùng là 9

=> 11y + 29 có chữ số tận cùng là 0 

=> 272x có chữ số tận cùng là 0

Vì x là số nguyên tố 

=> x = 5 

Thay x = 5 vào bài; ta có: 

\(272.5-29=11^y\)

\(\Rightarrow11^y=1331=11^3\)

=> y = 3 ( thỏa mãn y là số nguyên tố )

Vậy x = 5 và y = 3

Bình luận (0)
H24
Xem chi tiết
NL
16 tháng 2 2022 lúc 21:57

\(11^y\equiv1\left(mod10\right)\Rightarrow11^y+29⋮10\)

\(\Rightarrow272x⋮10\Rightarrow272x⋮5\)

\(\Rightarrow x⋮5\Rightarrow x=5\) do x nguyên tố

Thay vào phương trình:

\(272.5=11^y+29\Rightarrow11^y=1331\Rightarrow y=3\)

Vậy \(\left(x;y\right)=\left(5;3\right)\)

Bình luận (0)
LT
Xem chi tiết
OP
Xem chi tiết
DN
Xem chi tiết
DT
21 tháng 11 2015 lúc 23:04

d 10^n+72^n -1

=10^n -1+72n

=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n

=9[10^(n-1)+10^(n-2)+..........................-9n+81n

Bình luận (0)
DX
Xem chi tiết
Xem chi tiết
NQ
Xem chi tiết