Tìm x nguyên dương để \(4x^3+14x^2+9x-6=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x nguyên dương để \(4x^3+14x^2+9x-6\)là số chính phương
Vì \(4x^3+14x^2+9x-6\) là số chính phương nên ta có \(4x^3+14x^2+9x-6=k^2\) với \(k\inℕ\)
Ta có \(4x^3+14x^2+9x-6=\left(x+2\right)\left(4x^2+6x-3\right)\)nên ta có \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)
Đặt \(\left(x+2;4x^2+6x-3\right)=d\)với \(d\inℕ^∗\)
Ta có \(x+2⋮d\Rightarrow\left(x+2\right)\left(4x-2\right)⋮d\Rightarrow4x^2+6x-4⋮d\)
Ta lại có \(4x^2+6x-3⋮d\Rightarrow\left(4x^2+6x-3\right)-\left(4x^2+6x-4\right)=1⋮d\)
\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))
Vậy \(\left(x+2;4x^2+6x-3\right)=1\)
mà \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)nên ta có:
x + 2 và 4x2 + 6x - 3 là số chính phương\(\Rightarrow\hept{\begin{cases}x+2=a^2\\4x^2+6x-3=b^2\end{cases}}\left(a,b\right)\inℕ^∗\)
Vì x > 0 nên ta có \(4x^2< b^2< 4x^2+12x+9\Leftrightarrow\left(2x\right)^2< b^2< \left(2x+3\right)^2\)
Vì b lẻ nên \(b^2=\left(2x+1\right)^2\Leftrightarrow4x^2+6x-3=4x^2+4x+1\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2 thì \(4x^3+14x^2+9x-6\)là số chính phương
Đây nha bn
http://olm.vn/hoi-dap/detail/97831197795.html
tìm x nguyên dương để biểu thức 4x3+14x2+9x-6 là 1 số chính phương
Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )
Mà ( x + 2 ; 4x2 + 6x - 3 ) = 1 ( tự c/m ) nên để 4x3 + 14x2 + 9x - 6 là SCP
\(\Rightarrow\)x + 2 và 4x2 + 6x - 3 là SCP
đặt x + 2 = a2 ; 4x2 + 6x - 3 = b2 \(\Rightarrow\)x = a2 - 2
thay vào ta có :
4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2
\(\Rightarrow\)16a4 - 40a2 + 4= 4b2 \(\Rightarrow\)( 4a2 - 2b - 5 ) ( 4a2 + 2b - 5 ) = 21
Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5
\(\Rightarrow\)lập bảng làm .... kết luận x = 2
Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
1,Tìm số thực x để 3 số \(x-\sqrt{3};x^2+2\sqrt{3};x-\frac{2}{x}\)là số nguyên
2, Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
-Tìm các số nguyên k để \(k^4-8k^3+23k^2-26k+10\) là số chính phương
-Tìm x nguyên dương để \(4x^3+14x^2+9x-6\) là số chính phương
\(A=k^4-8k^3+23k^2-26k+10\)
\(=k^2\left(k^2-2k+1\right)-6k\left(k^2-2k+1\right)+10\left(k^2-2k+1\right)\)
\(=\left(k^2-6k+10\right)\left(k-1\right)^2\)
+ TH1 : \(\left(k-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}A=0\\k=1\left(TM\right)\end{matrix}\right.\)
+ TH2 : \(\left(k-1\right)^2\ne0\)
=> A là số cp \(\Leftrightarrow k^2-6k+10\) là số cp
\(\Leftrightarrow k^2-6k+10=n^2\) ( \(n\in N\)* )
\(\Leftrightarrow\left(k-3\right)^2+1=n^2\)
\(\Leftrightarrow\left(n-k+3\right)\left(n+k-3\right)=1\)
Xét các TH rồi tìm đc \(k=3\)
tìm x ∈ N* để \(4x^3+14x^2+9x-6\) là số chính phương
. Bài 1: Phân tích đa thức thành nhân tử
a; A = x^3-2x^2-5x+6
b; B = x^4+5x^2+6
c; C = x^4-2x^3+2x-1
d; D = x^3+4x^2+5x+2
. Bài 2: Tìm x
a; x^3-9x^2+14x=0
b; x^3-5x^2+8x-4=0
c; x^4-2x^3+x^2=0
d; 2x^3+x^2-4x-2=0
tim x nguyen duong de 4x^3+14x^2+9x-6 la so chinh phuong
Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )
Chứng minh x+2 và 4x2 + 6x - 3 nguyên tố cùng nhau nên để 4x3 + 14x2 + 9x - 6 là số chính phương
thì x + 2 và 4x2 + 6x -3 là số chính phương
đặt x + 2 = a2 ; 4x2 + 6x -3 = b2
\(\Rightarrow x=a^2-2\)
Thay vào ta có : 4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2
\(\Rightarrow16a^4-40a^2+4=4b^2\Rightarrow\left(4a^2-2b-5\right)\left(4a^2+2b-5\right)=21\)
Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5
..... tìm được x = 2
Tìm x,biết
a./1-9x/-10=0
b./3-14x/-13=0
c./1-4x/-7=0
d./7x-8/-10=0
a, |1 - 9x| - 10 = 0
=> |1 - 9x| = 10
=> 1 - 9x = 10 hoặc 1 - 9x = -10
=> 9x = -9 hoặc 9x = 11
=>x = -1 hoặc x = 11/9
vậy_
b, |3 - 14x| - 13 = 0
=> |3 - 14x| = 13
=> 3 - 14x = 13 hoặc 3 - 14x = -13
=> 14x = -10 hoặc 14x = 16
=> x = -10/14 hoặc x = 16/14
các phần sau tương tự