Tính giá trị biểu thức:\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{999x1001}\)
Tính nhanh giá trị biểu thức sau:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{95x97}+\frac{2}{97x99}\)
= 1-1/3 + 1/3-1/5+.......+1/97-1/99
= 1 - 1/99
= 98/99
sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{95.97}\)\(+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
Tính
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}\)
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Tính giá trị của biểu thức:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+.......+\frac{2}{2003x2005}\)
\(x\) là nhân nhé.
Theo cách mk học sẽ suy ra lun
=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005
=1-1/2005
=2004/2005
\(\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}\right)\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
\(S=\frac{1}{1x3}-\frac{1}{2x4}+\frac{1}{3x5}-\frac{1}{4x6}+\frac{1}{5x7}-\frac{1}{6x8}+\frac{1}{7x9}-\frac{1}{8x10}\)
giúp mình với mình đang cần gấp.
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)
\(\Rightarrow S=\frac{11}{20}\)
ko bao giờ 323445465
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2013x2015}\)
(Viết dưới dạng phân số tối giản)
\(=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2013x2015}\)
\(=\frac{1}{2}x\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{2013x2015}\right)\)
\(=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{2015}\right)\)
\(=\frac{1}{2}x\frac{2014}{2015}\)
\(=\frac{1007}{2015}\)
1/1-1/3+1/3-1/5+1/5-1/7+....+1/2013-1/2015
=1/1-1/2015
=2014/2015
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+........+\frac{1}{11x13}+\frac{1}{13x15}\)
ai đúng sẽ k cho người đó
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
mik đã trả lời rồi mà , sao chưa hiện ra ????
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11\times13}+\frac{2}{13\times15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}=\frac{14}{15}\)
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+......+\frac{1}{Xx\left(X+2\right)}=\frac{8}{17}\)
Tìm x, biết x là số lẻ
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
x là số lẻ vậy x có thể là: 1 ; 3 ; 5 ; 7 ; 9
Còn lại bạn tự giải nha! Cứ dùng phương pháp loại suy thử với từng số là ra! dễ mà
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{8}{17}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{8}{17}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
A = \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+ \(\frac{1}{5x7}\)+ ..... + \(\frac{1}{97x99}\)
Songoku saiyan 4 sai rồi kết quả hai là \(\frac{49}{99}\) |