Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DH
Xem chi tiết
LF
7 tháng 12 2016 lúc 11:45

\(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\)\(\Leftrightarrow\frac{4\left(x^2-4\right)}{x\left(x+2\right)}=\frac{A}{x}\)

\(\Leftrightarrow\frac{4\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}=\frac{A}{x}\)\(\Leftrightarrow\frac{4\left(x-2\right)}{x}=\frac{A}{x}\)

\(\Leftrightarrow4\left(x-2\right)=A\Leftrightarrow A=4x-8\)

 

Bình luận (0)
NL
Xem chi tiết
PM
Xem chi tiết
VD
Xem chi tiết
LD
16 tháng 12 2020 lúc 15:12

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
DH
Xem chi tiết
NT
6 tháng 12 2016 lúc 23:20

\(\frac{4x^2}{x^2+2x}=\frac{A}{x}\)\(\Rightarrow\frac{x\cdot4x}{x\left(x+2\right)}=\frac{A}{x}\)

\(\Rightarrow\frac{4x}{x+2}=\frac{A}{x}\Rightarrow4x^2=A\left(x+2\right)\)\(\Rightarrow A=\frac{4x^2}{x+2}\)

 

Bình luận (1)
VA
6 tháng 12 2016 lúc 23:25

A=\(\frac{4x^2}{x+2}\)

Bình luận (0)
NT
7 tháng 12 2016 lúc 11:59

đề đúng này hả /hoi-dap/question/139801.html nick kia giải r` kia

Bình luận (1)
H24
Xem chi tiết
H24
1 tháng 5 2019 lúc 21:09

ko ai rảnh để trả lời đâu

Bình luận (0)
ZZ
1 tháng 5 2019 lúc 21:11

\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)

\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)

\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)

Bình luận (0)
H24
1 tháng 5 2019 lúc 21:15

Ngu vcl

Bình luận (0)
VP
Xem chi tiết
H24
Xem chi tiết
LF
24 tháng 11 2016 lúc 12:16

a)\(\frac{x^2+5x+4}{x^2-1}=\frac{A}{x^2-2x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)\left(x-1\right)}=\frac{A}{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{x+4}{x-1}=\frac{A}{\left(x-1\right)^2}\). Nhân 2 vế ở tử với x-1 ta có:

\(x+4=\frac{A}{x-1}\Leftrightarrow A=\left(x-1\right)\left(x+4\right)=x^2+3x-4\)

b)\(\frac{x^2-3x}{2x^2-7x+3}=\frac{x^2+4x}{A}\)

\(\Leftrightarrow\frac{x\left(x-3\right)}{\left(2x-1\right)\left(x-3\right)}=\frac{x\left(x+4\right)}{A}\)

\(\Leftrightarrow\frac{x}{2x-1}=\frac{x\left(x+4\right)}{A}\).Nhân 2 vế ở mẫu với x ta có:

\(2x-1=\frac{x+4}{A}\)\(\Leftrightarrow\left(2x-1\right)\left(x+4\right)=A\Leftrightarrow A=2x^2+7x-4\)

 

 

Bình luận (0)