\(\frac{x}{x^2-2x}=\frac{B}{4x^2-16}\Leftrightarrow\frac{x}{x\left(x-2\right)}=\frac{B}{\left(2x+4\right)\left(2x-4\right)}\)
\(\Leftrightarrow x\left(2x+4\right)\left(2x-4\right)=x\left(x-2\right).B\)
\(\Rightarrow B=\frac{x.\left[2\left(x+2\right)\right].\left[2\left(x-2\right)\right]}{x\left(x-2\right)}=\frac{x.2\left(x+2\right).2\left(x-2\right)}{x\left(x-2\right)}\)
\(B=\frac{x.4\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=4\left(x+2\right)\)
\(\frac{x}{x^2-2x}=\frac{B}{4x^2-16}\)
\(\frac{x}{x\left(x-2\right)}=\frac{B}{4.\left(x^2-4\right)}\)
\(\frac{1}{x-2}=\frac{B}{4.\left(x^2-4\right)}\)
\(\Rightarrow B.\left(x-2\right)=4.\left(x-2\right)\left(x+2\right)\)
\(B=4.\left(x+2\right)\)
\(B=4x+8\)