Những câu hỏi liên quan
H24
Xem chi tiết
H24
29 tháng 8 2021 lúc 9:55

Giúp mình với mn

 

Bình luận (0)
NM
29 tháng 8 2021 lúc 9:59

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

Bình luận (0)
H24
29 tháng 8 2021 lúc 10:02

a) gọi d là \(UCLN\left(5n+2;2n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5n+2⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow5\left(2n+1\right)-2\left(5n+2\right)=10n+5-10n-4⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(5n+2;2n+1\right)=1\)b) gọi d là \(UCLN\left(7n+10;5n+7\right)\)

\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\Rightarrow5\left(7n+10\right)-7\left(5n+7\right)=35n+50-35n-49⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(7n+10;5n+7\right)=1\)

d) gọi d là \(UCLN\left(3n+1;5n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+1⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)=15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\\ \RightarrowƯCLN\left(3n+1;5n+2\right)=1\)

Bình luận (0)
DK
Xem chi tiết
TD
5 tháng 12 2019 lúc 22:31

Bài 1:

Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 1; 3n + 1)

⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d                        ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d                        ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d

⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

Bài 2:

Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 4n + 12)

⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d                        ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d                        ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d

⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d

⇒⇒2 ⋮⋮d

Mà: 2n + 5 là số lẻ nên d = 1

Do đó: ƯCLN(2n + 5; 4n + 12) = 1

Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.

Bài 3:

Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(12n + 1; 30n + 2)

⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d                        ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d                        ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d

⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(12n + 1; 30n + 2) = 1

Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.

Bài 4:

Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)

Bài giải:

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)

⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d                        ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d                        ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d

⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(2n + 5; 3n + 7) = 1

Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.

Bài 5:

Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)

⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d                        ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d                        ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d

⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(5n + 7; 3n + 4) = 1

Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.

Bài 6:

Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)

Bài giải:

Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)

⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d                        ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d                        ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d

⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d

⇒⇒1 ⋮⋮d

⇒⇒d = 1

Do đó: ƯCLN(7n + 10; 5n + 7) = 1

Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.

Bình luận (0)
 Khách vãng lai đã xóa
DK
6 tháng 12 2019 lúc 21:45

THANKS BẠN NHA !

Bình luận (0)
 Khách vãng lai đã xóa
RR
Xem chi tiết
H24
15 tháng 1 2018 lúc 12:27

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........

Bình luận (0)
DT
Xem chi tiết
DN
4 tháng 11 2023 lúc 20:48

Ko hiểu ????

Bình luận (0)
AT
4 tháng 11 2023 lúc 21:07

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2017 lúc 3:36

Bình luận (0)
GM
Xem chi tiết
DT
28 tháng 7 2015 lúc 18:34

Gọi d > 0 là ước số chung của 7n+10 và 5n+7

=> d là ước số của 5.(7n+10) = 35n +50

và d là ước số của 7(5n+7)= 35n +49

mà (35n + 50) -(35n +49) =1

=> d là ước số của 1 => d = 1

Vậy _________________

    

 

 

Gọi d > 0 là ước số chung của 2n+3 và 4n + 8

=> d là ước số của 2(2n + 3) = 4n + 6

(4n + 8) - (4n + 6) = 2

=> d là ước số của 2 => d=1,2

d = 2 không là ước số của số lẻ 2n+3 => d = 1

Vậy __________________

Bình luận (0)
H24
13 tháng 11 2016 lúc 18:40

kho qua

Bình luận (0)
DT
13 tháng 12 2016 lúc 23:15

  Câu a : Giả sử : ƯCLN ( 7n + 10 ; 5n + 7 ) = 1

             => 7n + 10 chia hết cho d  => ( 7n + 10 ) . 5 chia hết cho d

             => 5n + 7 chia hết cho d  => ( 5n + 7 ) . 7 chia hết cho d

             => 35n + 50 chia hết cho d  => ( 35n + 50 ) - ( 35 + 49 ) = 1 chia hét cho d

                  35 + 49 chia hết cho d  => ( 35n + 49 ) - ( 35 + 50 ) = 1 chia hết cho d

           Vì 1 chia hết cho d và d thuộc N nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N 

             => ƯCLN ( 7n + 13 ; 2n + 14 ) = 1

          Vậy : 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau 

        Câu b : Giả sử : ƯCLN ( 2n +3 ; 4n + 8 ) = 1

             => 2n + 3 chia hết cho d  => ( 2n + 3 ) chia hết cho d 

                  4n + 8 chia hết cho d  => ( 4n + 8 ) . 2 chia hết cho d

             => 2n + 3 chia hết cho d  => ( 2n + 4 ) - ( 2n +3 ) = 1 chia hết cho d

             => 2n + 4 chia hết cho d  => ( 2 + 3 ) - ( 2n + 4 ) = 1 chia hết cho d

         Vì 1 chia hết cho d và d thuộc N  nên Ư( 1 ) = { 1 } . Vì 1 chia hết cho d và d thuộc N 

            => ƯCLN ( 2n + 3 ; 4n + 8 ) = 1

                       Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau

Bình luận (0)
LT
Xem chi tiết
VQ
24 tháng 11 2015 lúc 18:42

gọi  UCLN﴾2n + 1 ; 6n + 5﴿ là d 

ta có :

2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d

6n + 5 chia hết cho d

=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d

=>2 chia hết cho d

=> d thuộc Ư﴾2﴿ = {1;2}

Mà 2n + 1 ; 6n + 5 lẻ nên n = 1

=>UCLN(..)=1

=>ntcn

Bình luận (0)
NA
Xem chi tiết
NN
22 tháng 4 2023 lúc 17:37

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

Bình luận (0)
NT
Xem chi tiết
DL
8 tháng 12 2018 lúc 14:10

Đặt (2n+3;4n+8)=d

=>2n+3 chia hết cho d

    4n+8 chia hết cho d

Do đó 2(2n+3) chia hết cho d

mà 4n+8 chia hết cho d

=>4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d thuộc {1;2}

=>d=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

b) Bạn giải tương tự câu a nhé

Bình luận (0)