Chứng minh tồn tại số nguyên tố x ; y ; z sao cho \(0
Chọn ra 51 số bất kì trong 100 số nguyên dương đầu tiên. Chứng minh rằng tồn tại hai số x, y được chọn mà x, y nguyên tố cùng nhau
trong trường hợp từ 1->51 hay là những số liên tiếp thì nó sẽ nguyên cùng nhau. Trường hợp 2 thì nó sẽ không thể là các số liên tiếp thì đồng nghĩa với việc là nó sẽ là 50 số chẵn hoặc lẻ nhưng vì phải chọn 51 số nên số còn lại chắc chắn là số còn lại ( chẵn hoặc lẻ ) => đpcm
chứng minh rằng tồn tại vô số các số nguyên tố có dạng 4k+3( chứng minh bằng phản chứng)
Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.
Gọi đó là p1, p2, ..., pk.
Xét A = 4*p1*p2*...*pk - 1
A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.
Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.
Vậy có vô hạn số nguyên tố dạng 4k + 3
**** nhe
Bài 1: chứng minh rằng nếu p là số nguyên tố lẻ thì không tồn tại các số nguyên x,y sao cho 1/p=1/x^2+1/y^2
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Chứng minh: Trong 5 số nguyên dương, không tồn tại tổng ba số bất kỳ có giá trị là một số nguyên tố.
Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3
Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3
=>LOại
Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư
=>Suy ra tồn tại 3 số có cùng số dư
=>Ba số này có tổng chia hết cho 3
=>ĐPCM
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh rằng tồn tại các số nguyên x,y,z thỏa mãn đẳng thức xx+yy=zp với p là một số nguyên tố lẻ
Chứng minh răng tồn tại các số nguyên dương x,y,z thỏa mãn đẳng thức:xx+yy=zp,với p là 1 số nguyên tố lẻ
Chứng minh răng tồn tại các số nguyên dương x,y,z thỏa mãn đẳng thức:xx+yy=zp,với p là 1 số nguyên tố lẻ