Cho A = 3 + 32 + 33 + 34 + ... + 3118 + 3119 + 3120
Cho A = 3 + 32 + 33 + ... + 3119
CMR: A chia hết cho 4, A chia hết cho 52.
A =3+32+33+...+3119
A=(3+32)+(33+34)+...(3118+3119)
A=3.(1+3)+33.(1+3)+...+3118.(1+3)
A=3.4+33.4+...+3118.4
A=4.(3+33+...+3118)\(⋮\)4
=>A\(⋮\)4
A=3+32+33+...+3119
A=(3+32+33)+...+(3117+3118+3119)
A=3.(1+3+9)+...+3117.(1+3+9)
A=3.13+...+3117.13
A=13.(3+...+3117)\(⋮\)13
vì A\(⋮\)4
và A\(⋮\)13
=>A\(⋮\)4.13
=>A\(⋮\)52
vậy A\(⋮\)4 và A\(⋮\)52
A = 1 + 3 + 32 + 33 + ... + 3119
a, Tính A
b, Tìm x biết 2A + 1 = 27x
c, A : hết cho 5 và 13 ko?
a,
A = 1 + 3 + 32 + 33 + ... + 3119
3A = 3.(1 + 3 + 32 + 33 + ... + 3119)
3A = 3 + 32 + 33 + 34+ ... + 3120
2A = 3A - A = (3 + 32 + 33 + 34 + ... + 3120) - (1 + 3 + 32 + 33 + ... + 3119)
2A = 3120 - 1
A = \(\frac{3^{120}-1}{2}\)
Vậy A = \(\frac{3^{120}-1}{2}\)
b, Ta có : 3120 - 1 + 1 = 27x
<=> 3120 = 27x
<=> 3120 = (33)x
<=> 3120 = 3x
<=> x = 120
Vậy x = 120
c, A có chia hết cho 5 và 13
Sua cho \(\left(3^3\right)^x=3^{3x}\) nha
\(\Rightarrow3^{120}=3^{3x}\Rightarrow x=\frac{120}{3}=40\)
Bài 6. Cho B = 3 + 32 +33 + ...+ 3120 . Chứng minh rằng: a) B chia hết cho 3; b) B chia hết cho 4; c) B chia hết cho 13.
\(B=3+3^2+3^3+...+3^{120}\)
Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{118}\right)⋮13\)
Cho A = 3 + 32 + 33 + ...+ 3120
a) c/m A chia hết cho 4,13 và 82 b)tìm chữ số tận cùng của A c) c/m 2A-3 là lũy thừa của 3Cho B 3 32 33 ... 3120 . Chứng minh rằng:
a) B chia hết cho 3
b) B chia hết cho 4
c) B chia hết cho 13
a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).
b) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
c) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)⋮13\)
B=3+32+33+...+3120. Chứng minh rằng:
a)B chia hết cho 3
b)B chia hết cho 4
c)B chia hết cho 13
Mọi người cho mình lời giải chi tiết nhé.
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
cho A=3+32+33+34+35+36 chứng minh A ⋮ 13
Ta có:
\(A=3+3^2+3^3+3^4+3^5+3^6\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)\)
\(A=39+3^3.\left(3+3^2+3^3\right)\)
\(A=39+3^3.39\)
\(A=39.\left(1+3^3\right)\)
Vì \(39⋮13\) nên \(39.\left(1+3^3\right)⋮13\)
Vậy \(A⋮13\)
\(#WendyDang\)
Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)$
$=3(1+3+3^2)+3^4(1+3+3^2)=(1+3+3^2)(3+3^4)=13(3+3^4)\vdots 13$
Ta có đpcm.
Cho A = 3+32+33+34+...+389+390. Chứng minh A chia hết cho 4.
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)
A = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) + . . . + ( 3 89 + 3 90 )
A = 3 ( 1 + 3 ) + 3 3 ( 1 + 3 ) + . . . + 3 89 ( 1 + 3 )
A = 3 ⋅ 4 + 3 3 ⋅ 4 + . . . + 3 89 ⋅ 4
A = 4 ( 3 + 3 3 + . . . + 3 89 ) ⋮ 4
3/cho A=3+32+33+34+...+32020
Tìm x biết 2A+3=3X
giúp mình với.
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)
cho A=1+3+32+33+34+...+32020+32021
tìm số dư khi A:40
A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]
A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]
A=[1+3+3^2+3^3] NHÂN[1+...+3^2018
A=40 nhân [1+...+3^2018]
=> A chia hết cho 40