Chứng minh rằng A + 2 không là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.
Cho A=2^2+2^3+2^4+...+2^20 .Chứng minh rằng A+4 không là số chính phương
Ta có A = 22 + 23 + 24 + ... + 220
2A = 23 + 24 + 25 + ... + 221
2A - A = ( 23 + 24 + 25 + ... + 221 ) - ( 22 + 23 + 24 + ... + 220 )
⇒ A + 4 = 221 - 22 + 4 = 221 - 4 + 4 = ( 24 )5 . 2 = ( ...6 )5 . 2 = ( ...6 ) . 2 = ( ...2 )
Vì không có số chính phương nào có tận cùng là chữ số 2 nên A + 4 không phải là số chính phương
Chứng minh rằng A không phải là số chính phương: A= 2+2^2+2^3+2^4+....+2^20
Vì 2\(⋮̸\)4
2\(^2\)\(⋮\)4
2\(^{^{ }3⋮}\)4
\(\Rightarrow\)A ko phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2)
Vì 2⋮̸4
2\(^2\)\(⋮\)4
2\(^3\)\(⋮\)4
\(\Rightarrow\)A không phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì sẽ chia hết cho p\(^2\))
chứng minh rằng
a, tổng của ba số chính phương liên tiếp không phải là một số chính phương
b, tổng S= 12 +22+32+...+302 không phải là số chính phương
chứng minh rằng tổng bình phương của 2 số lẻ bất kì không là số chính phương .
Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1
\(\left(2k+1\right)^2+\left(2a+1\right)^2\)
\(=4k^2+4k+1+4a^2+4a+1\)
\(=4k^2+4a^2+4k+4a+2\) không là số chính phương
Bài 1. Chứng minh rằng: a) A = abc + bca + cba không là số chính phương. b) ababab không là số chính phương.
Bài 2. Tìm tất cả các số có bốn chữ số vừa là số chính phương, vừa là lập phương của một số tự nhiên.
Bài 3. Tìm số nguyên tố sao cho + là số chính phương.
Chứng minh rằng số A=1!+2!+...+n! (n thuộc N, n>3) không là số chính phương
Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
Cho A=1!+2!+3!+4!+...+2015!
a,Tìm chữ số tận cùng của A
b,Chứng minh rằng A không phải số chính phương
c,Chứng minh rằng A là hợp số