tìm x, y thuộc N để x^2+5y là số chính phương
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
Tìm x thuộc N để :
a) x2+65 là số chính phương
b)x-13 và x+12 là số chính phương
c)x+51 và x-38 là số chính phương
Bài 1 : Tìm x , y thuộc Z , biết
a ) 21x - 17y = -3
b) 1/x + y/6 = 1/2
GIÚP VỚI !!!!!!!!!!
Bài 2 : Tìm Ước chung lớn nhất của ( 2n - 1 và 9n + 4 )
Bài 3 :
a ) Tìm n để n^2 + 2004 là số chính phương
b) Chứng minh rằng nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 và ngược lại 9x + 5y chia hết cho 17 thì 2x + 3y chia hết cho 17
Bài 2 :Tìm n thuộc N
a)n^2+13 là số chính phương
b)n-13 và n+12 đều là số chính phương
c)n+41 và n+14 đều là số chính phương
Bài 3 : Tìm số tự nhiên x,y biết
a)x^2+3^y=3026
b)3^x+8=y^2
c)4x^2=3^y+1295
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
tìm x thuộc tập hợp N để:
a) N - 3 và x + 20 là số chính phương
b) n2 + 101 là một số chính phương
c) n2 - 59 là số chính phương
Tìm x thuộc N để A=1!+2!+3!+...+x! là 1 số chính phương
Tìm x thuộc Z để
x^2+4x+12 là số chính phương
x^2-8x+12 là số chính phương
x^2+x+1 là số chính phương
x^2+3 là số chính phương
tìm x thuộc n để x^2+2x+20 có giá trị là số chính phương
Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)
\(\Leftrightarrow x^2+2x+1+19=a^2\)
\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)
\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)
\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)
Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)
Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)
Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương