Những câu hỏi liên quan
TT
Xem chi tiết
DC
Xem chi tiết
RS
25 tháng 10 2016 lúc 21:07

a) Ta có 252=152+202 hay BC2=AB2+AC2

=> ▲ABC vuông tại A

b) Xét ▲ABC vuông tại A có
SinB = \(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)
TanC = \(\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)
=> SinB + TanC = \(\frac{4}{5}+\frac{3}{4}=\frac{31}{20}\)

c) I là trung điểm AC => AI = 10cm.
=> BI2 = 102+152= 325 => BI = \(5\sqrt{13}\)
Xét ▲ABI có TanI = \(\frac{3}{2}\)=> góc BIA = 56'18'

=> BIC = 180 - 56'18' = 123 độ 41 phút.

 

Bình luận (1)
H24
Xem chi tiết
NT
Xem chi tiết
NT
12 tháng 10 2021 lúc 22:14

\(\sin\widehat{B}=\dfrac{\sqrt{3}}{2}\)

nên \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan60^0=3\sqrt{3}\left(cm\right)\)

hay \(BC=6\sqrt{3}\left(cm\right)\)

Bình luận (0)
NT
Xem chi tiết
NM
12 tháng 10 2021 lúc 19:42

\(\sin\widehat{B}=\dfrac{\sqrt{3}}{2}=\sin60^0\Leftrightarrow\widehat{B}=60^0\)

\(\cos\widehat{B}=\cos60^0=\dfrac{AB}{BC}=\dfrac{1}{2}\Leftrightarrow BC=6\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=\sqrt{36-9}=3\sqrt{3}\left(cm\right)\)

Bình luận (0)
NP
Xem chi tiết
ND
11 tháng 10 2020 lúc 13:24

Ta có: \(AC=BC\cdot\sin B=10\cdot\frac{3}{4}=7,5\left(cm\right)\)

\(\Rightarrow AB=\sqrt{BC^2-CA^2}=\sqrt{100-\frac{225}{4}}=\frac{5\sqrt{7}}{2}\left(cm\right)\)

Từ đó ta tính được:

\(\widehat{B}=49^0\) ; \(\sin C=\frac{AB}{BC}=\frac{\sqrt{7}}{4}\) \(\Rightarrow\widehat{C}=41^0\)

Vậy \(\hept{\begin{cases}AB=\frac{5\sqrt{7}}{2}\left(cm\right)\\AC=7,5\left(cm\right)\end{cases}}\) và \(\hept{\begin{cases}\widehat{B}=49^0\\\widehat{C}=41^0\end{cases}}\) (số đo góc chỉ xấp xỉ)

Bình luận (0)
 Khách vãng lai đã xóa
NP
11 tháng 10 2020 lúc 16:56

cho tam giác ABC, góc A =90 độ, AB=12cm

CosB=\(\frac{3}{5}\). Tính AC, BC, góc B, góc C

Bình luận (0)
 Khách vãng lai đã xóa
PC
Xem chi tiết
TK
Xem chi tiết
HQ
Xem chi tiết