Những câu hỏi liên quan
HK
Xem chi tiết
H24
Xem chi tiết
PL
31 tháng 8 2019 lúc 21:52

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c\)

\(=\left(ab^3-a^3b\right)+\left(bc^3-ac^3\right)+\left(a^3c-b^3c\right)\)

\(=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)\)

\(=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c-abc+b^2c\right)\)

Bình luận (1)
TC
Xem chi tiết
TT
Xem chi tiết
TN
10 tháng 11 2017 lúc 22:10

a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3) =a(b^3-a^3+a^3-c^3)+b(c^3-a^3)+c(a^3-b^3) = -a(a^3-b^3)-a(c^3-a^3)+b(c^3-a^3)+c(a^3-b^3) = (a^3-b^3)(c-a)-(c^3-a^3)(a-b) = (a-b)(c-a)(a^2+ab+b^2)-(a-b)(c-a)(c^2+ac+b^2) = (a-b)(c-a)(a^2+ab+b^2-c^2-ac-b^2) = (a-b)(c-a)(a^2+ab-c^2-ac)

Có vẻ nhìn hơi rối mắt bạn thông cảm nha

Bình luận (0)
AN
Xem chi tiết
TM
8 tháng 7 2021 lúc 11:02

33333333333332233322322322223222232222222)

=(ab)(bc)[(ac)(a+c)+b(ac)]

=(ab)(bc)(ac)(a+b+c)

Bình luận (0)
 Khách vãng lai đã xóa
PD
8 tháng 7 2021 lúc 11:14

ko bt đâu nhá!

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
AH
28 tháng 10 2018 lúc 0:20

Lời giải:

\(a(b^3-c^3)+b(c^3-a^3)+c(a^3-b^3)\)

\(=a(b^3-c^3)-b[(b^3-c^3)+(a^3-b^3)]+c(a^3-b^3)\)

\(=(b^3-c^3)(a-b)-(a^3-b^3)(b-c)\)

\(=(b-c)(a-b)(b^2+bc+c^2)-(a-b)(b-c)(a^2+ab+b^2)\)

\(=(a-b)(b-c)(b^2+bc+c^2-a^2-ab-b^2)\)

\(=(a-b)(b-c)[(c-a)(c+a)+b(c-a)]\)

\(=(a-b)(b-c)(c-a)(c+a+b)\)

Bình luận (0)
BK
Xem chi tiết
NT
Xem chi tiết
KY
14 tháng 8 2021 lúc 19:19

Ta có: VT=(a+b+c)3−a3−b3−c3

=[(a+b+c)3−a3]−(b3+c3)

=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
NM
24 tháng 10 2021 lúc 10:50

Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Leftrightarrow x+y+z=a+b+c\)

Do đó \(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(\Leftrightarrow A=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\\ \Leftrightarrow A=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow A=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(c+a-b+a+b-c\right)\\ \Leftrightarrow A=3\cdot2b\cdot2c\cdot2a=24abc\)

Bình luận (0)

Công ty cổ phần BINGGROUP © 2014 - 2025
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn