Tìm GTNN của:
A=\(|x-\frac{1}{2}|+\left(y+2^2\right)+11\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Tìm GTNN: \(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
tìm GTNN của Q= \(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Cho x,y,z>0 thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{\left(x+1\right)^2.\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2.\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2.\left(x+1\right)^2}{y^2+1}\)
Cho x,y >0 và x+y=1. Tìm GTNN của\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Bài làm:
Ta có: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=x^2y^2+2+\frac{1}{x^2y^2}\)
\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)
Mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow x^2y^2\le\frac{1}{16}\)
Thay vào ta tính được:
\(M\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\cdot\frac{1}{16}}+2\)
\(=\frac{1}{8}+\frac{255}{16}+2=\frac{289}{16}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Vậy \(Min_M=\frac{289}{16}\Leftrightarrow x=y=\frac{1}{2}\)
Đánh máy xong hết lại bấm hủy-.-
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Cho 2 số dương x và y x+y = 1 . Tìm GTNN của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Mình ko chắc lắm :
Áp dụng BĐT AM - GM ta có :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\frac{x^2y^2+1}{y^2}.\frac{x^2y^2+1}{x^2}=\frac{x^4y^4+2x^2y^2+1}{x^2y^2}\)
\(=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+\frac{255}{256.\left(xy\right)^2}+2\)
\(\ge2.\frac{1}{16}+\frac{255}{256.\left(\frac{\left(x+y\right)^2}{4}\right)^2}+2\)
\(=\frac{1}{8}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)
Khi \(x=y=\frac{1}{2}\)
Chúc bạn học tốt !!!
Tìm GTNN của biểu thức
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
\(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)
\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)
Vậy min Q = -5/2 tại x = y = +-1
Còn cách đặt ẩn phụ thế này:
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)
Đặt x2y2 = t >= 0. Khi đó:
\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1