Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
HA
13 tháng 10 2019 lúc 7:20

có t i c k ko

Bình luận (0)
H24
13 tháng 10 2019 lúc 8:52

ha tuan anh

Trả lời đc rồi hãng nói đến t i c k 

Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à

Bình luận (0)
H24
13 tháng 10 2019 lúc 8:53

và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá 

Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi 

Ko cho ra đc lời giải thì thôi đừng tl làm j cả

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 3 2020 lúc 20:56

Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 3 2020 lúc 20:58

Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d

Mà d thuộc N* => d={1;2}

Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2

=> d=1

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NC
24 tháng 3 2020 lúc 21:00

Với mọi số tự nhiên n 

Đặt: ( 2n + 1; 2n + 3 ) = d ( với d là số tự nhiên )

=> \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\Rightarrow2⋮d\)

=> \(d\inƯ\left(2\right)=\left\{1;2\right\}\)

Mặt khác : 2n + 1 là số lẻ nên \(2n+1⋮̸2\)=> d = 1

=>  2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau với mọi n 

Vậy với mọi số tự nhiên  n thì \(A=\frac{2n+1}{2n+3}\) là phân số tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NN
13 tháng 3 2018 lúc 20:24

M=1+3+5....+(2n-1)

Số số hạng (2n-1-1)/2+1=n số hạng

Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương

Bình luận (0)
ML
13 tháng 3 2018 lúc 20:25

toán lớp mấy

Bình luận (0)
BD
Xem chi tiết
LM
30 tháng 9 2018 lúc 6:44

Ta co n^2 chia 5 du 1 hoac du 4

=>n^4 chia 5 du 1 hoac du 4

\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)

Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)

Vay n^5-n chia het cho 5

Bình luận (0)
PD
Xem chi tiết
DH
Xem chi tiết
KG
Xem chi tiết
XO
24 tháng 7 2023 lúc 16:56

\(P=n^3+n+2\)

\(=\left(n^3+1\right)+\left(n+1\right)\)

\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)

\(=\left(n+1\right).\left(n^2-n+2\right)\)

Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)

nên P là hợp số 

Bình luận (0)
TB
Xem chi tiết
2T
4 tháng 9 2019 lúc 20:32

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
Bình luận (0)
LM
4 tháng 9 2019 lúc 20:36

a,25^n.24

mà 25^n :5

Bình luận (0)
 .
4 tháng 9 2019 lúc 20:37

a) \(25^{n+1}-25^n=25^n.\left(25-1\right)\)

\(=25^n.24=25^n.4.6\)

\(=\left(25^n.4\right).6⋮100\) ( do \(25^n.4⋮100\forall n\inℕ^∗\) )

b) \(n^2.\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n-1\right).\left(n^2-2n\right)\)

\(=\left(n-1\right).n.\left(n-2\right)\)

Ba số trên là ba số liên tiếp

\(\Rightarrow\hept{\begin{cases}\left(n-1\right).n.\left(n-2\right)⋮2\\\left(n-1\right).n.\left(n-2\right)⋮3\end{cases}}\)

\(\Rightarrow\left(n-1\right).n.\left(n-2\right)⋮6\)

hay : \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right)\)

Đến đây tương tự câu b) thì ta có đpcm.

Bình luận (0)