Những câu hỏi liên quan
H24
Xem chi tiết
NT
23 tháng 1 2021 lúc 22:31

2) Ta có: \(\dfrac{59-x}{19}+\dfrac{58-x}{18}=\dfrac{57-x}{17}+\dfrac{56-x}{16}\)

\(\Leftrightarrow\dfrac{59-x}{19}-1+\dfrac{58-x}{18}-1=\dfrac{57-x}{17}-1=\dfrac{56-x}{16}-1\)

\(\Leftrightarrow\dfrac{40-x}{19}+\dfrac{40-x}{18}-\dfrac{40-x}{17}-\dfrac{40-x}{16}=0\)

\(\Leftrightarrow\left(40-x\right)\left(\dfrac{1}{19}+\dfrac{1}{18}-\dfrac{1}{17}-\dfrac{1}{16}\right)=0\)

mà \(\dfrac{1}{19}+\dfrac{1}{18}-\dfrac{1}{17}-\dfrac{1}{16}\ne0\)

nên 40-x=0

hay x=40

Vậy: x=40

Bình luận (1)
TH
24 tháng 1 2021 lúc 20:19

cho mk hỏi 4x-  5/8 hay (4x-5)/8   =6-x/2 phải ko

 

Bình luận (1)
LB
Xem chi tiết
XO
27 tháng 1 2022 lúc 19:27

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

Bình luận (0)
XO
27 tháng 1 2022 lúc 19:37

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

Bình luận (0)
H24
Xem chi tiết
H24
12 tháng 3 2020 lúc 17:16

Bài 2:

(1 + x)3 + (1 - x)- 6x(x + 1) = 6

<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6

<=> -6x + 2 = 6

<=> -6x = 6 - 2

<=> -6x = 4

<=> x = -4/6 = -2/3

Bài 3: 

a) (7x - 2x)(2x - 1)(x + 3) = 0

<=> 10x3 + 25x2 - 15x = 0

<=> 5x(2x - 1)(x + 3) = 0

<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = 1/2 hoặc x = -3

b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0

<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0

<=> -x2 + 9 = 0

<=> -x2 = -9

<=> x2 = 9

<=> x = +-3

c) (x + 4)(5x + 9) - x2 + 16 = 0

<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0

<=> 4x2 + 29x + 52 = 0

<=> 4x2 + 13x + 16x + 52 = 0

<=> 4x(x + 4) + 13(x + 4) = 0

<=> (4x + 13)(x + 4) = 0

<=> 4x + 13 = 0 hoặc x + 4 = 0

<=> x = -13/4 hoặc x = -4

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 3 2020 lúc 20:06

Lê Nhật Hằng cảm ơn bạn nha

Bình luận (0)
 Khách vãng lai đã xóa
PD
Xem chi tiết
SH
4 tháng 1 2019 lúc 23:07

a ) \(4.\left(x-8\right)< 0\)

\(\Leftrightarrow4x-32< 0\)

\(\Leftrightarrow4x< 32\)

\(\Leftrightarrow x< 8\)

b ) \(-3\left(x.2\right)< 0\)

\(\Leftrightarrow-6x< 0\)

\(\Leftrightarrow x>0\)

Bình luận (0)
KN
5 tháng 1 2019 lúc 7:12

\(\text{a) }4\left(x-8\right)< 0\)

\(\Leftrightarrow x-8< 0\div4\)

\(\Leftrightarrow x-8< 0\)

\(\Leftrightarrow x< 0+8\)

\(\Leftrightarrow x< 8\)

\(\Rightarrow x\in\left\{...;0;1;2;3;4;5;6;7\right\}\)

\(\text{b) }-3\left(2x\right)< 0\)

\(\Leftrightarrow2x< \frac{0}{-3}\)

\(\Leftrightarrow2x< 0\)

\(\Leftrightarrow x< 0\div2\)

\(\Leftrightarrow x< 0\)

\(\Rightarrow\hept{\begin{cases}x\inℤ\\x\notinℕ^∗\end{cases}}\)

Bình luận (0)
PT
Xem chi tiết
DH
27 tháng 11 2016 lúc 10:44

a ) Để 4.( x - 8 ) < 0 <=> 4 và x - 8 trái dấu 

Mà 4 > 0 => x - 8 < 0 => x < 8

Vậy x < 8

b ) Để -3 ( x - 2 ) < 0 <=> - 3 và x - 2 trái dấu

Mà - 3 < 0 => x - 2 > 0 => x > 2

Vậy x > 2

Bình luận (0)
PM
Xem chi tiết
NT
22 tháng 11 2023 lúc 20:34

a: |2x-3|=|1-x|

=>\(\left[{}\begin{matrix}2x-3=1-x\\2x-3=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x+x=3+1\\2x-x=-1+3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3x=4\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\end{matrix}\right.\)

b: \(x^2-4x< =5\)

=>\(x^2-4x-5< =0\)

=>\(x^2-5x+x-5< =0\)

=>\(x\left(x-5\right)+\left(x-5\right)< =0\)

=>\(\left(x-5\right)\left(x+1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}x-5>=0\\x+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\x< =-1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-5< =0\\x+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =5\\x>=-1\end{matrix}\right.\)

=>-1<=x<=5

c: 2x(2x-1)<=2x-1

=>\(\left(2x-1\right)\cdot2x-\left(2x-1\right)< =0\)

=>\(\left(2x-1\right)^2< =0\)

mà \(\left(2x-1\right)^2>=0\forall x\)

nên \(\left(2x-1\right)^2=0\)

=>2x-1=0

=>2x=1

=>\(x=\dfrac{1}{2}\)

Bình luận (0)
NG
Xem chi tiết
DH
9 tháng 1 2019 lúc 21:41

a) \(4.\left(x-8\right)< 0\)

Vì 4 > 0 nên để thỏa mãn 4.(x-8) < 0

Thì \(x-8< 0\Rightarrow x< 8\)

Ta chọn bất kì x = {7;6;5;4;3} (hoặc bạn có thể chọn các số khác chỉ cần nhỏ hơn 8)

b) \(-3.\left(x-2\right)< 0\)

Vì -3 < 0 nên để thỏa mãn -3.(x-2) < 0

thì x - 2 phải lớn hơn 0

<=> x > 2

Ta có thể chọn bất kì: x = {3;4;7;10;9}

Bình luận (0)
NL
Xem chi tiết
MX
Xem chi tiết
NA
18 tháng 2 2019 lúc 20:47

a) để .....<0 thì x-8<0 => x<8
b) để ....< 0 thì phải khác dấu . lại có -3<0 nên x-2> 0 ===> x>2
c) Thì x-7 >0 (vì 1983 >0) ==<x>7
 

Bình luận (0)