Chờ a,b,c > 0 và ab + bc + ca = 2abc
CMR: \(sigma\frac{1}{a\left(2a-1\right)^2}\ge\frac{1}{2}\)
ten ten ten
1. Cho a,b,c>0 và a+b+c=1 CMR sigma\(\frac{a-bc}{a+bc}\le\frac{3}{2}\)
2. cho a,b,c>0 va abc=1 CMR sigma\(\frac{1}{a\left(b+1\right)}\ge\frac{3}{2}\)
3.(i think it is difficult for you)
ch a,b,c>0 CMR sigma\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}\ge\frac{9abc}{4\left(3abc+ab^2+bc^2+ca^2\right)}\)
4. CMR với mọi n là số tự nhiên lớn hơn 1 thì \(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+...+\frac{1}{\sqrt{n^2+n}}< 1\)
bài 1
<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)
sử dụng tiếp cauchy sharws
Bài 2: đặt a=x/y, b=y/x, c=z/x
1) 0<a,b,c<1 và ab+bc+ca=1.find Min of:
\(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
2) a,b,c>0.CMR:
\(\frac{1}{\left(2a+b\right)^2}+\frac{1}{\left(2b+c\right)^2}+\frac{1}{\left(2c+a\right)^2}\ge\frac{1}{ab+bc+ca}\)
3)a,b,c>0 CMR:
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
Câu 1/ Ta có
\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)
\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)
Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)
\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)
Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)
Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)
\(\Rightarrow y'=-4x+1=0\)
\(\Rightarrow x=\frac{1}{4}=0,25\)
Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)
Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)
BĐT nhé ae: Với các ẩn dương nhé
1. abc=1. CM \(sigma\left(\frac{1}{2a^3+b^3+c^3+2}\right)\le\frac{1}{2}\)
2.\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)CM \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Sao hôm thứ 7 nghỉ
Cho a,b,c>0 thỏa mãn ab+bc+ca=2abc . CMR : \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\ge\frac{1}{2}\)
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
Mạnh mẽ hơn Nesbitt?
Với a, b, c là các số thực sao cho: \(a+b+c>0,\text{ }ab+bc+ca>0,\text{ }\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\) thì:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\ge\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)-\frac{9}{4}\)
Chứng minh: \(4\left(a+b+c\right)\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\cdot\left(\text{VT}-\text{VP}\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left[\Sigma\left(ab+bc-2ca\right)^2+\left(ab+bc+ca\right)\Sigma\left(a-b\right)^2\right]\)
\(+\left(a+b+c\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?
Cho a,b,c là các số thực 0<a,b,c<1 và ab+bc+ca=1
CMR:\(\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\ge\sqrt{3}-2\)
\(\frac{a^2b+bc^2-1}{ac\left(a+c\right)}+\frac{b^2c+ca^2-1}{ab\left(a+b\right)}+\frac{c^2a+ab^2-1}{bc\left(b+c\right)}\)
\(=\frac{a^2b^2+b^2c^2-b}{a+c}+\frac{b^2c^2+c^2a^2-c}{a+b}+\frac{c^2a^2+a^2b^2-a}{b+c}\)
\(=\frac{\frac{1}{a^2}-\frac{1}{ac}+\frac{1}{c^2}}{a+c}+\frac{\frac{1}{b^2}-\frac{1}{ab}+\frac{1}{a^2}}{a+b}+\frac{\frac{1}{c^2}-\frac{1}{bc}+\frac{1}{b^2}}{b+c}\ge\frac{1}{ac\left(a+c\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ab\left(b+a\right)}\)
\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cho a , b , c > 0 thỏa mãn \(a^2b+b^2c+c^2a=3\)
Chứng minh \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge\frac{a+b+c}{3}\)
cho a,b,c là các số thực không âm thỏa mãn ab+bc+ca>0. Chứng minh rằng
\(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}+\frac{1}{ab+bc+ca}\ge\frac{12}{\left(a+b+c\right)^2}\)
Em chỉ giải ra được 1 TH dấu bằng thôi: a = b = c (còn trường hợp a = b; c=0 và các hoán vị thì em chịu, vì khi xét dấu = trong bđt thì em chỉ xảy ra 1 th)
Áp dụng BĐT Cauchy-Schwarz dạng Engel;
\(VT\ge\frac{16}{a^2+b^2+c^2+\left(a+b+c\right)^2}\ge\frac{16}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)^2}\)\(=\frac{12}{\left(a+b+c\right)^2}\) (đpcm)
Đẳng thức xảy ra khi a = b = c